Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2014: 253-266, 2019.
Article in English | MEDLINE | ID: mdl-31197802

ABSTRACT

Sucrose transport across membranes requires the activity of transport proteins. Sucrose-specific SWEET proteins mediate sugar efflux out of the cytosol and SUC proteins catalyze the uptake of sucrose from the apoplast. Both transport processes are involved in phloem loading in source leaves as well as in the post-phloem pathway in sink tissues. An important step during the characterization of new sucrose transporters is to analyze their transport activity. This is usually achieved by heterologous expression of the respective gene in yeast cells or Xenopus oocytes and subsequent uptake measurements. However, in some cases, mistargeting to internal membranes or the lack of protein modifications and/or interaction partners in the heterologous system can interfere with uptake analyses. Therefore, a new in planta method was developed that is based on mesophyll protoplasts as expression system and the fluorescent sucrose analog esculin to monitor uptake activities by confocal microscopy. In this chapter we describe the design of constructs required to analyze sucrose transporters in protoplasts, the experimental setup of the protoplast-esculin assay, and the quantitative evaluation of the obtained data. The quantification of esculin uptake allows the application of the new assay to a variety of questions, e.g., by comparison of point mutants, splice variants, or transporters with and without interaction partners.


Subject(s)
Biological Assay , Esculin/metabolism , Protoplasts/metabolism , Sucrose/metabolism , Arabidopsis/metabolism , Biological Transport , Microscopy, Confocal , Phloem/metabolism , Plant Leaves/metabolism
2.
Plant Cell ; 30(9): 2057-2081, 2018 09.
Article in English | MEDLINE | ID: mdl-30120167

ABSTRACT

Pollen tube growth requires a high amount of metabolic energy and precise targeting toward the ovules. Sugars, especially glucose, can serve as nutrients and as signaling molecules. Unexpectedly, in vitro assays revealed an inhibitory effect of glucose on pollen tube elongation, contradicting the hypothesis that monosaccharide uptake is a source of nutrition for growing pollen tubes. Measurements with Förster resonance energy transfer-based nanosensors revealed that glucose is taken up into pollen tubes and that the intracellular concentration is in the low micromolar range. Pollen tubes of stp4-6-8-9-10-11 sextuple knockout plants generated by crossings and CRISPR/Cas9 showed only a weak response to glucose, indicating that glucose uptake into pollen tubes is mediated mainly by these six monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family. Analyses of HEXOKINASE1 (HXK1) showed a strong expression of this gene in pollen. Together with the glucose insensitivity and altered semi-in vivo growth rate of pollen tubes from hxk1 knockout lines, this strongly suggests that glucose is an important signaling molecule for pollen tubes, is taken up by STPs, and detected by HXK1. Equimolar amounts of fructose abolish the inhibitory effect of glucose indicating that only an excess of glucose is interpreted as a signal. This provides a possible model for the discrimination of signaling and nutritional sugars.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Glucose/metabolism , Monosaccharide Transport Proteins/metabolism , Pollen Tube/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport/genetics , Biological Transport/physiology , Gene Expression Regulation, Plant , Hexokinase , Monosaccharide Transport Proteins/genetics , Pollen Tube/growth & development , Pollination/genetics , Pollination/physiology
3.
Front Plant Sci ; 9: 430, 2018.
Article in English | MEDLINE | ID: mdl-29740457

ABSTRACT

The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.

4.
Plant Physiol ; 176(3): 2330-2350, 2018 03.
Article in English | MEDLINE | ID: mdl-29311272

ABSTRACT

The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we report on the characterization of STP7, STP8, and STP12, three previously uncharacterized members of this family in Arabidopsis (Arabidopsis thaliana). Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that STP8 and STP12 catalyze the high-affinity proton-dependent uptake of glucose and also accept galactose and mannose. STP12 additionally transports xylose. STP8 and STP12 are highly expressed in reproductive organs, where their protein products might contribute to sugar uptake into the pollen tube and the embryo sac. stp8.1 and stp12.1 T-DNA insertion lines developed normally, which may point toward functional redundancy with other STPs. In contrast to all other STPs, STP7 does not transport hexoses but is specific for the pentoses l-arabinose and d-xylose. STP7-promoter-reporter gene plants showed an expression of STP7 especially in tissues with high cell wall turnover, indicating that STP7 might contribute to the uptake and recycling of cell wall sugars. Uptake analyses with radioactive l-arabinose revealed that 11 other STPs are able to transport l-arabinose with high affinity. Hence, functional redundancy might explain the missing-mutant phenotype of two stp7 T-DNA insertion lines. Together, these data complete the characterization of the STP family and present the STPs as new l-arabinose transporters for potential biotechnological applications.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabinose/metabolism , Monosaccharide Transport Proteins/metabolism , Xylose/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA, Bacterial , Gene Expression Regulation, Plant , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Monosaccharide Transport Proteins/genetics , Plants, Genetically Modified , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
J Exp Bot ; 67(8): 2387-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26893494

ABSTRACT

Pollen tubes are fast growing, photosynthetically inactive cells. Their energy demand is covered by specific transport proteins in the plasma membrane that mediate the uptake of sugars. Here we report on the functional characterization of AtSTP10, a previously uncharacterized member of the SUGAR TRANSPORT PROTEIN family. Heterologous expression of STP10 cDNA in yeast revealed that the encoded protein catalyses the high-affinity uptake of glucose, galactose and mannose. The transporter is sensitive to uncouplers of transmembrane proton gradients, indicating that the protein acts as a hexose-H(+)symporter. Analyses of STP10 mRNA and STP10 promoter-reporter gene studies revealed a sink-specific expression pattern of STP10 in primordia of lateral roots and in pollen tubes. This restriction to sink organs is mediated by intragenic regions of STP10 qPCR analyses with cDNA of in vitro grown pollen tubes showed that STP10 expression was down-regulated in the presence of 50mM glucose. However, in pollen tubes of glucose-insensitive plants, which lack the glucose sensor hexokinase1 (HXK1), no glucose-induced down-regulation of STP10 expression was detected. A stp10T-DNA insertion line developed normally, which may point towards functional redundancy. The data presented in this paper indicate that a high-affinity glucose uptake system is induced in growing pollen tubes under low glucose conditions and that this regulation may occur through the hexokinase pathway.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Glucose/pharmacology , Monosaccharide Transport Proteins/metabolism , Pollen Tube/genetics , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Biological Transport/drug effects , DNA, Bacterial/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Reporter , Glucuronidase/metabolism , Monosaccharide Transport Proteins/genetics , Mutagenesis, Insertional/genetics , Pollen Tube/drug effects , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Saccharomyces cerevisiae/metabolism , Sequence Analysis, Protein , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
6.
Plant Cell ; 24(11): 4687-702, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23204408

ABSTRACT

The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity-dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase.


Subject(s)
Chlamydomonas reinhardtii/physiology , Chlamydomonas reinhardtii/radiation effects , Gene Expression Regulation, Plant/radiation effects , Light , Movement/physiology , Phototropins/metabolism , Algal Proteins/genetics , Algal Proteins/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/ultrastructure , Gene Expression , Genetic Complementation Test , Organelle Size , Organelles/physiology , Phototropins/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Structure, Tertiary , Sequence Deletion , Signal Transduction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...