Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SAR QSAR Environ Res ; 34(9): 745-764, 2023.
Article in English | MEDLINE | ID: mdl-37706255

ABSTRACT

Physical hazards of chemical mixtures, associated for example with their fire or explosion risks, are generally characterized using experimental tools. These tests can be expensive, complex, long to perform and even dangerous for operators. Therefore, for several years and especially with the implementation of the REACH regulation, predictive methods like quantitative structure-property relationships have been encouraged as alternatives tests to determine (eco)toxicological but also physical hazards of chemical substances. Initially, these approaches were intended for pure products, by considering a molecular similarity principle. However, additional to those for pure products, QSPR models for mixtures recently appeared and represent an increasing field of research. This study proposes a state of the art of existing QSPR models specifically dedicated to the prediction of the physical hazards of mixtures. Identified models have been analysed on the key elements of model development (experimental data and fields of application, descriptors used, development and validation methods). It draws up an overview of the potential and limitations of current models as well as areas of progress towards enlarged deployment as a complement to experimental characterizations, for example in the search for safer substances (according to safety-by-design concepts).


Subject(s)
Fires , Quantitative Structure-Activity Relationship
2.
SAR QSAR Environ Res ; 24(4): 279-318, 2013.
Article in English | MEDLINE | ID: mdl-23521394

ABSTRACT

For registration of a chemical, European Union REACH legislation requires information on the relevant physico-chemical properties of the chemical. Predicted property values can be used when the predictions can be shown to be valid and adequate. The relevant physico-chemical properties that are amenable to prediction are: melting/freezing point, boiling point, relative density, vapour pressure, surface tension, water solubility, n-octanol-water partition coefficient, flash point, flammability, explosive properties, self-ignition temperature, adsorption/desorption, dissociation constant, viscosity, and air-water partition coefficient (Henry's law constant). Published quantitative structure-property relationship (QSPR) methods for all of these properties are discussed, together with relevant property prediction software, as an aid for those wishing to use predicted property values in submissions to the European Chemicals Agency (ECHA).


Subject(s)
Chemical Phenomena , Inorganic Chemicals/chemistry , Organic Chemicals/chemistry , Chemistry, Physical , European Union , Quantitative Structure-Activity Relationship
3.
Chemphyschem ; 6(7): 1316-23, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-15968699

ABSTRACT

The formation of molecular hydrogen in the radiolysis of water confined in nanoscale pores of well-characterised porous silica glasses and mesoporous molecular sieves (MCM-41) is examined. The comparison of dihydrogen formation by irradiation of both materials, dry and hydrated, shows that a large part of the H2 comes from the surface of the material. The radiolytic yields, G(H2)=(3+/-0.5)x10(-7) mol J(-1), calculated using the total energy deposited in the material and the water, are only slightly affected by the degree of hydration of the material and by the pore size. These yields are also not modified by the presence of hydroxyl radical scavengers. This observation proves that the back reaction between H2 and HO(.) is inoperative in such confined environments. Furthermore, the large amount of H2 produced in the presence of different concentrated scavengers of the hydrated electron and its precursor suggests that these two species are far from being the only species responsible for the H2 formation. Our results show that the radiolytic phenomena that occur in water confined in nanoporous silica are dramatically different to those in bulk water, suggesting the need to investigate further the chemical reactivity in this type of environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...