Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 123(2): 537-46, 2004.
Article in English | MEDLINE | ID: mdl-14698760

ABSTRACT

Psychostimulants and antipsychotic drugs increase mRNA expression of the neuropeptide neurotensin (NT) in the striatum and nucleus accumbens. In the present study, we used mice lacking the dopamine transporter (DAT) to investigate the consequences of a chronic hyperdopaminergic state on NT gene expression. NT mRNA expression was examined under basal conditions and after administration of haloperidol or amphetamine using in situ hybridization with a digoxigenin-labeled NT cRNA probe. DAT-/- mice exhibited a striking increase in the number of NT mRNA-expressing perikarya in the substantia nigra and ventral tegmental area, as well as a less pronounced increase in the lateral septum compared with wild-type littermates. No changes were detected in other regions expressing NT mRNA. Acute administration of haloperidol (1 mg/kg) induced a significant increase in the number of NT mRNA-expressing neurons in the dorsomedial and dorsolateral striatum of wild-type mice but failed to stimulate NT gene expression in DAT mutants. In contrast, a higher dose of haloperidol (5 mg/kg) stimulated striatal NT mRNA expression both in DAT+/+ and DAT-/- mice. Amphetamine (10 mg/kg) increased the number of hybridized neurons in the nucleus accumbens shell and fundus striati of wild-type and DAT-/- mice, indicating that the drug acted through a target other than DAT, such as the serotonin or the norepinephrine transporters. The up-regulation of NT mRNA observed in DAT-/- mice may represent an adaptive mechanism in response to constitutive hyperdopaminergia. These results illustrate the profound alterations in the NT system induced by chronic stimulation of DA receptors and underscore the potential clinical relevance of NT/DA interactions in schizophrenia and drug abuse.


Subject(s)
Brain/physiology , Membrane Glycoproteins , Membrane Transport Proteins/deficiency , Mental Disorders/physiopathology , Nerve Tissue Proteins , Neurotensin/biosynthesis , Amphetamine/pharmacology , Animals , Brain/drug effects , Dopamine Agents/pharmacology , Dopamine Antagonists/pharmacology , Dopamine Plasma Membrane Transport Proteins , Gene Expression/drug effects , Haloperidol/pharmacology , In Situ Hybridization , Mice , Neurotensin/drug effects , Neurotensin/genetics , RNA, Messenger/analysis , RNA, Messenger/drug effects , Reverse Transcriptase Polymerase Chain Reaction
2.
Mol Pharmacol ; 60(3): 462-73, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11502876

ABSTRACT

We report the isolation, functional characterization, and localization of a Na(+)/Cl(-)-dependent catecholamine transporter (meNET) present in the brain of the teleost fish medaka. This carrier is very similar to the human neuronal norepinephrine transporter (NET) and the human neuronal dopamine transporter (DAT), showing 70 and 64% amino acid identity, respectively. When expressed in COS-7 cells, this transporter mediates the high-affinity uptake of dopamine (K(M) = 290 nM) and norepinephrine (K(M) = 640 nM). Its pharmacological profile reveals more similarities with NET, including a high affinity for the tricyclic antidepressants desipramine (IC(50) = 0.92 nM) and nortriptyline (IC(50) = 16 nM). In situ hybridization on the medaka brain shows that meNET mRNA is present only in a subset of tyrosine hydroxylase-positive neurons found in the noradrenergic areas of the hindbrain, such as the locus ceruleus and area postrema. None of the dopaminergic areas anterior to the isthmus contains any labeled neurons. Neither reverse transcriptase-polymerase chain reaction with degenerate primers specific for gamma-aminobutyric acid transporter/NET nor autoradiographic experiments with [(125)I]3b-(4-iodophenyl)-tropane-2b-carboxylic acid methyl ester revealed an additional catecholamine transporter in the medaka brain. Uptake experiments with medaka brain synaptosomes show an endogenous transport with a pharmacological profile identical to that of the recombinant meNET. Thus, meNET is probably the predominant--if not the only--catecholamine transporter in the medaka fish brain. In view of the highly conserved primary structures and pharmacological properties of meNET, it is tempting to speculate that a specific dopamine transport developed later in vertebrate evolution and probably accompanied the tremendous enlargement of the meso-telencephalic dopaminergic pathways in amniotes.


Subject(s)
Brain/metabolism , Carrier Proteins/biosynthesis , Catecholamines/metabolism , Membrane Transport Proteins , Sodium Chloride/metabolism , Symporters , Amino Acid Sequence , Animals , Biological Transport , COS Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Catecholamine Plasma Membrane Transport Proteins , Cloning, Molecular , Molecular Sequence Data , Norepinephrine Plasma Membrane Transport Proteins , Oryzias , Phylogeny , Rats , Sequence Homology, Amino Acid , Transfection
3.
J Biol Chem ; 276(11): 8254-60, 2001 Mar 16.
Article in English | MEDLINE | ID: mdl-11092898

ABSTRACT

The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.


Subject(s)
Antidepressive Agents, Tricyclic/metabolism , Carrier Proteins/chemistry , Symporters , Amino Acid Sequence , Binding Sites , Carrier Proteins/metabolism , Cocaine/pharmacology , Desipramine/pharmacology , Dopamine/metabolism , Molecular Sequence Data , Norepinephrine Plasma Membrane Transport Proteins , Nortriptyline/pharmacology , Transfection
4.
Psychopharmacology (Berl) ; 159(1): 2-9, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11797063

ABSTRACT

RATIONALE: Mice lacking the dopamine transporter (DAT(-/-)) exhibit high extracellular dopamine levels and marked hyperactivity. This hyperlocomotion is paradoxically decreased by acute administration of amphetamine-like psychostimulants, an effect that has been previously related to the activation of serotonergic neurotransmission. OBJECTIVES: The goal of the present study was to investigate the effects of acute and daily administration of d-amphetamine on the locomotor activity of DAT(-/-) mice and examine the development of behavioral sensitization. In addition, we tested the implication of the serotonin system in the observed effects. METHODS: DAT(+/+), DAT(+/-), and DAT(-/-) mice were injected with acute amphetamine (0, 0.3, 1, 3, or 10 mg/kg, SC), repeated amphetamine (1 mg/kg for 8 days, SC), or with the serotonin reuptake inhibitor fluoxetine (0, 5, 10, or 20 mg/kg, SC) and their locomotor activity was evaluated. Moreover, the expression of the serotonin transporter and 5-HT(1A) receptors in the brain of DAT(-/-) mice was studied using autoradiography. RESULTS: Acute and repeated d-amphetamine injection (1 mg/kg) induced an hypolocomotor response in DAT(-/-) and DAT(+/-) mice, but only DAT(+/-) mice developed locomotor sensitization to the drug. Acute treatment with fluoxetine decreased locomotion in DAT(-/-) mice in a dose-dependent manner. The common hypolocomotor effect induced by d-amphetamine and fluoxetine in DAT(-/-) mice suggests an action on the serotonin transporter. However, autoradiography of the serotonin transporter and 5-HT(1A) receptors showed normal density and distribution in the brain, suggesting no compensatory effects due to the deletion of the DAT. CONCLUSIONS: These findings indicate that partial or total DAT gene deletion result in decreased locomotion in response to d-amphetamine and modify behavioral sensitization depending on the proportion of DAT removed, suggesting that inhibition of the DAT is necessary for the development of sensitization to psychostimulant drugs.


Subject(s)
Dextroamphetamine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Membrane Glycoproteins , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Motor Activity/drug effects , Nerve Tissue Proteins , Animals , Dopamine Plasma Membrane Transport Proteins , Dose-Response Relationship, Drug , Drug Administration Schedule , Gene Deletion , Mice , Mice, Inbred C57BL , Motor Activity/genetics
5.
Behav Pharmacol ; 11(3-4): 279-90, 2000 Jun.
Article in English | MEDLINE | ID: mdl-11103882

ABSTRACT

Mice lacking the dopamine transporter (DAT-/-) are characterized by high extracellular dopamine levels and spontaneous hyperlocomotion. We performed a detailed analysis of the behavioural phenotype of DAT-/- mice in order to identify other behavioural impairments associated with the hyperdopaminergic tone of these mutant mice. In particular, we investigated locomotor activity, exploration, and social and maternal behaviours, which are known to be regulated by dopamine. DAT-/- mice were easily aroused by novelty and always responded with hyperlocomotion, which interfered with habituation to the testing environment, exploratory behaviour in an open field and the coping response to forced swimming stress. Social behaviours such as interaction with an unknown congener or aggressiveness were not modified in DAT-/- mice compared with DAT+/- and DAT+/+ mice, although the maternal behaviour of mutant females was severely disturbed. Haloperidol and clozapine reversed the hyperactivity in DAT-/- mice, with a rightward shift of the dose-response curve compared with control animals, suggesting a dopamine-mediated effect. These results emphasize the role of dopamine regulation in locomotion, exploration and maternal behaviours and suggest that mice with a genetic deletion of DAT may represent a useful model to elucidate the altered behavioural processes accompanying pathological conditions associated with hyperdopaminergic function.


Subject(s)
Behavior, Animal , Carrier Proteins/genetics , Dopamine/analysis , Locomotion , Membrane Glycoproteins , Membrane Transport Proteins , Nerve Tissue Proteins , Aggression , Animals , Circadian Rhythm , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Female , Male , Maternal Behavior , Mice , Mice, Knockout , Physical Conditioning, Animal , Social Behavior
6.
Brain Res Mol Brain Res ; 80(1): 1-6, 2000 Aug 14.
Article in English | MEDLINE | ID: mdl-11039723

ABSTRACT

The orphan nuclear receptor Nurr1 is critical for the survival of mesencephalic dopaminergic precursor neurons. Little is known about the mechanisms that regulate Nurr1 expression in vivo. Other members of this receptor family have been shown to be activated by dopamine. We sought to determine if Nurr1 expression is also regulated by endogenous dopamine through dopamine receptors. Consequently, we investigated the expression of Nurr1 mRNA in genetically modified mice lacking both functional copies of the D2 dopamine receptor gene and in their congenic siblings. Quantitative in situ hybridization demonstrated a significant increased expression of Nurr1 mRNA in the substantia nigra pars compacta and the ventral tegmental area of D2 dopamine receptor -/- mice. No change in Nurr1 expression was detected in other brain regions, such as the habenular nuclei and temporal cortex. Among the cell groups studied, mesencephalic dopaminergic neurons are unique in that they express both Nurr1 and the D2 dopamine receptor, and synthesize dopamine. Thus, it seems plausible that the selective increase in Nurr1 expression observed in D2 receptor-deficient mice is the consequence of an impaired dopamine autoreceptor function.


Subject(s)
DNA-Binding Proteins , Mesencephalon/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , RNA, Messenger/metabolism , Receptors, Dopamine D2/physiology , Transcription Factors/genetics , Animals , In Situ Hybridization , Mice , Nuclear Receptor Subfamily 4, Group A, Member 2 , Receptors, Dopamine D2/biosynthesis , Receptors, Dopamine D3 , Substantia Nigra/cytology
7.
Eur J Neurosci ; 12(5): 1827-37, 2000 May.
Article in English | MEDLINE | ID: mdl-10792459

ABSTRACT

The activation of dopamine (DA) neurotransmission plays a crucial role in the behavioural responses to drugs of abuse. In particular, increased extracellular levels of DA within the mesolimbic pathway have been implicated in the rewarding and locomotor stimulatory properties of morphine. We investigated the behavioural responses to morphine in mice with a genetic disruption of the DA transporter (DAT), resulting in a constitutively high level of extrasynaptic DA. In the conditioned place preference test, DAT-/- mice exhibited a stronger rewarding response to morphine (5 mg/kg, s.c.) compared with control littermates. However, the same dose of morphine failed to increase locomotor activity in DAT-/- mice, whilst enhancing locomotion in DAT+/- and DAT+/+ animals. Morphine-induced analgesia was unaffected in mutant mice, but the behavioural expression of naloxone-induced withdrawal signs was blunted. In vivo voltammetry in the shell of the nucleus accumbens revealed that morphine was able to stimulate DA neurons in DAT-/- mice, resulting in the accumulation of higher extracellular DA levels compared with control animals. Morphine also induced a higher rate of c-fos transcription in the shell of the nucleus accumbens in mutant mice. We conclude that morphine-induced rewarding responses are firmly established in DAT mutant mice despite a DA transmission that is already tonically activated, and independently of any effect on locomotion. These particular behavioural responses to morphine may be associated with the action of the drug on DA release and c-fos expression in the shell of the nucleus accumbens of DAT-/- mice.


Subject(s)
Carrier Proteins/physiology , Choice Behavior/physiology , Conditioning, Operant/physiology , Dopamine/physiology , Membrane Glycoproteins , Membrane Transport Proteins , Morphine Dependence/physiopathology , Morphine/pharmacology , Motor Activity/physiology , Nerve Tissue Proteins , Reward , Analgesia , Animals , Carrier Proteins/genetics , Choice Behavior/drug effects , Crosses, Genetic , Cues , Dopamine Plasma Membrane Transport Proteins , Light , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Photic Stimulation
8.
Eur J Neurosci ; 11(10): 3499-511, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10564358

ABSTRACT

Mice lacking the dopamine transporter (DAT) display biochemical and behavioural dopaminergic hyperactivity despite dramatic alteration in dopamine homeostasis. In order to determine the anatomical and functional integrity of the dopaminergic system, we examined the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis as well as DOPA decarboxylase and vesicular monoamine transporter. TH-positive neurons in the substantia nigra were only slightly decreased (-27.6 +/- 4.5%), which can not account for the dramatic decreases in the levels of TH and dopamine that we previously observed in the striatum. TH mRNA levels were decreased by 25% in the ventral midbrain with no modification in the ratio of TH mRNA levels per cell. However, TH protein levels were decreased by 90% in the striatum and 35% in the ventral midbrain. In the striatum, many dopaminergic projections had no detectable TH, while few projections maintained regular labelling as demonstrated using electron microscopy. DOPA decarboxylase levels were not modified and vesicular transporter levels were decreased by only 28.7% which suggests that the loss of TH labelling in the striatum is not due to loss of TH projections. Interestingly, we also observed sporadic TH-positive cell bodies using immunohistochemistry and in situ hybridization in the striatum of homozygote mice, and to some extent that of wild-type animals, which raises interesting possibilities as to their potential contribution to the dopamine hyperactivity and volume transmission previously reported in these animals. In conjunction with our previous findings, these results highlight the complex regulatory mechanisms controlling TH expression at the level of mRNA, protein, activity and distribution. The paradoxical hyperdopaminergia in the DAT KO mice despite a marked decrease in TH and dopamine levels suggests a parallel to Parkinson's disease implying that blockade of DAT may be beneficial in this condition.


Subject(s)
Basal Ganglia/enzymology , Carrier Proteins/genetics , Gene Expression Regulation, Enzymologic , Membrane Transport Proteins , Nerve Tissue Proteins , Neuropeptides , Tyrosine 3-Monooxygenase/genetics , Animals , Basal Ganglia/chemistry , Basal Ganglia/cytology , Dopa Decarboxylase/genetics , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Female , In Situ Hybridization , Male , Membrane Glycoproteins/analysis , Membrane Glycoproteins/genetics , Mesencephalon/chemistry , Mesencephalon/cytology , Mesencephalon/enzymology , Mice , Mice, Knockout , Microscopy, Electron , Neurons/enzymology , Neurons/ultrastructure , RNA, Messenger/analysis , Synaptic Transmission/genetics , Tyrosine 3-Monooxygenase/analysis , Vesicular Biogenic Amine Transport Proteins , Vesicular Monoamine Transport Proteins
9.
J Auton Pharmacol ; 19(6): 327-33, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10961738

ABSTRACT

1. This article gives a short overview of the physiology, pharmacology and the molecular biology of the human Na+/Cl(-)-dependent noradrenaline transporter (hNAT) and its gene. 2. Furthermore, naturally occurring variants of the hNAT are described and new results obtained through site-directed mutagenesis of the hNAT are presented, which increase our understanding about structural domains and amino acids critically involved in substrate, cosubstrate and inhibitor binding to the hNAT.


Subject(s)
Biogenic Monoamines/metabolism , Carrier Proteins/metabolism , Neurotransmitter Agents/metabolism , Symporters , Adrenergic Uptake Inhibitors/pharmacology , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Desipramine/pharmacology , Humans , Mutation, Missense/genetics , Norepinephrine Plasma Membrane Transport Proteins , Polymorphism, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...