Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(45): e2201380119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36322724

ABSTRACT

Emotional communication relies on a mutual understanding, between expresser and viewer, of facial configurations that broadcast specific emotions. However, we do not know whether people share a common understanding of how emotional states map onto facial expressions. This is because expressions exist in a high-dimensional space too large to explore in conventional experimental paradigms. Here, we address this by adapting genetic algorithms and combining them with photorealistic three-dimensional avatars to efficiently explore the high-dimensional expression space. A total of 336 people used these tools to generate facial expressions that represent happiness, fear, sadness, and anger. We found substantial variability in the expressions generated via our procedure, suggesting that different people associate different facial expressions to the same emotional state. We then examined whether variability in the facial expressions created could account for differences in performance on standard emotion recognition tasks by asking people to categorize different test expressions. We found that emotion categorization performance was explained by the extent to which test expressions matched the expressions generated by each individual. Our findings reveal the breadth of variability in people's representations of facial emotions, even among typical adult populations. This has profound implications for the interpretation of responses to emotional stimuli, which may reflect individual differences in the emotional category people attribute to a particular facial expression, rather than differences in the brain mechanisms that produce emotional responses.


Subject(s)
Facial Recognition , Individuality , Adult , Humans , Facial Expression , Emotions/physiology , Anger/physiology , Algorithms
2.
IEEE Trans Pattern Anal Mach Intell ; 40(9): 2265-2272, 2018 09.
Article in English | MEDLINE | ID: mdl-28952934

ABSTRACT

Helmholtz Stereopsis is a 3D reconstruction method uniquely independent of surface reflectance. Yet, its sub-optimal maximum likelihood formulation with drift-prone normal integration limits performance. Via three contributions this paper presents a complete novel pipeline for Helmholtz Stereopsis. First, we propose a Bayesian formulation replacing the maximum likelihood problem by a maximum a posteriori one. Second, a tailored prior enforcing consistency between depth and normal estimates via a novel metric related to optimal surface integrability is proposed. Third, explicit surface integration is eliminated by taking advantage of the accuracy of prior and high resolution of the coarse-to-fine approach. The pipeline is validated quantitatively and qualitatively against alternative formulations, reaching sub-millimetre accuracy and coping with complex geometry and reflectance.

3.
Int J Comput Vis ; 124(1): 18-48, 2017.
Article in English | MEDLINE | ID: mdl-32025092

ABSTRACT

Helmholtz Stereopsis is a powerful technique for reconstruction of scenes with arbitrary reflectance properties. However, previous formulations have been limited to static objects due to the requirement to sequentially capture reciprocal image pairs (i.e. two images with the camera and light source positions mutually interchanged). In this paper, we propose colour Helmholtz Stereopsis-a novel framework for Helmholtz Stereopsis based on wavelength multiplexing. To address the new set of challenges introduced by multispectral data acquisition, the proposed Colour Helmholtz Stereopsis pipeline uniquely combines a tailored photometric calibration for multiple camera/light source pairs, a novel procedure for spatio-temporal surface chromaticity calibration and a state-of-the-art Bayesian formulation necessary for accurate reconstruction from a minimal number of reciprocal pairs. In this framework, reflectance is spatially unconstrained both in terms of its chromaticity and the directional component dependent on the illumination incidence and viewing angles. The proposed approach for the first time enables modelling of dynamic scenes with arbitrary unknown and spatially varying reflectance using a practical acquisition set-up consisting of a small number of cameras and light sources. Experimental results demonstrate the accuracy and flexibility of the technique on a variety of static and dynamic scenes with arbitrary unknown BRDF and chromaticity ranging from uniform to arbitrary and spatially varying.

SELECTION OF CITATIONS
SEARCH DETAIL
...