Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Part Fibre Toxicol ; 19(1): 57, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982496

ABSTRACT

BACKGROUND: Over the last two decades, nanotechnologies and the use of nanoparticles represent one of the greatest technological advances in many fields of human activity. Particles of titanium dioxide (TiO2) are one of the nanomaterials most frequently found in everyday consumer products. But, due in particular to their extremely small size, TiO2 nanoparticles (NPs) are prone to cross biological barriers and potentially lead to adverse health effects. The presence of TiO2 NPs found in human placentae and in the infant meconium has indicated unequivocally the capacity for a materno-fetal transfer of this nanomaterial. Although chronic exposure to TiO2 NPs during pregnancy is known to induce offspring cognitive deficits associated with neurotoxicity, the impact of a gestational exposure on a vital motor function such as respiration, whose functional emergence occurs during fetal development, remains unknown. RESULTS: Using in vivo whole-body plethysmographic recordings from neonatal mice, we show that a chronic exposure to TiO2 NPs during pregnancy alters the respiratory activity of offspring, characterized by an abnormally elevated rate of breathing. Correspondingly, using ex vivo electrophysiological recordings performed on isolated brainstem-spinal cord preparations of newborn mice and medullary slice preparations containing specific nuclei controlling breathing frequency, we show that the spontaneously generated respiratory-related rhythm is significantly and abnormally accelerated in animals prenatally exposed to TiO2 NPs. Moreover, such a chronic prenatal exposure was found to impair the capacity of respiratory neural circuitry to effectively adjust breathing rates in response to excitatory environmental stimuli such as an increase in ambient temperature. CONCLUSIONS: Our findings thus demonstrate that a maternal exposure to TiO2 NPs during pregnancy affects the normal development and operation of the respiratory centers in progeny.


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Female , Humans , Maternal Exposure/adverse effects , Metal Nanoparticles/toxicity , Mice , Nanoparticles/toxicity , Pregnancy , Respiration , Titanium/toxicity
2.
Biochim Biophys Acta Gen Subj ; 1861(6): 1587-1596, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28179102

ABSTRACT

BACKGROUND: In the context of systematically administered nanomedicines, the physicochemistry of NP surfaces must be controlled as a prerequisite to improve blood circulation time, and passive and active targeting. In particular, there is a real need to develop NP stealth and labelling for both in vivo and microscopic fluorescence imaging in a mice model. METHODS: We have synthesized NIR/red dually fluorescent silica nanoparticles of 19nm covalently covered by a PEG layer of different grafting density in the brush conformational regime by using a reductive amination reaction. These particles were characterized by TEM, DRIFT, DLS, TGA, ζ potential measurements, UV-vis and fluorescence spectroscopy. Prostate tumors were generated in mice by subcutaneous injection of RM1-CMV-Fluc cells. Tumor growth was monitored by BLI after a D-luciferin injection. Four samples of PEGylated fluorescent NPs were individually intravenously injected into 6 mice (N=6, total 24 mice). Nanoparticle distribution was investigated using in vivo fluorescence reflectance imaging (FRI) over 48h and microscopy imaging was employed to localize the NPs within tumors in vitro. RESULTS: Fluorescent NP accumulation, due to the enhanced permeability and retention (EPR) effect, increases gradually as a function of increased PEG surface grafting density with a huge difference observed for the highest density grafting. For the highest grafting density, a blood circulation time of up to 24h was observed with a strong reduction in uptake by the liver. In vivo experimental results suggest that the biodistribution of NPs is very sensitive to slight variations in surface grafting density when the NPs present a high curvature radius. CONCLUSION: This study underlines the need to compensate a high curvature radius with a PEG-saturated NP surface to improve blood circulation and accumulation within tumors through the EPR effect. Dually fluorescent NPs PEGylated to saturation display physical properties useful for assessing the susceptibility of tumors to the EPR effect. GENERAL SIGNIFICANCE: Control of the physicochemical features of nanoparticle surfaces to improve blood circulation times and monitoring of the EPR effect. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Subject(s)
Fluorescent Dyes/administration & dosage , Molecular Imaging/methods , Nanomedicine/methods , Nanoparticles/administration & dosage , Polyethylene Glycols/chemistry , Prostatic Neoplasms/diagnostic imaging , Silicon Dioxide/administration & dosage , Animals , Cell Line, Tumor , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Injections, Intravenous , Luminescent Measurements , Male , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Permeability , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Surface Properties , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...