Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 17823, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36280776

ABSTRACT

Phosphate slurries are studied using the XRF technique and the effect of the particle sizes and the water content parameters are analyzed and reported for the first time. Samples of the phosphate slurry with different particle sizes (425 µm, 300 µm, 250 µm, 200 µm, 160 µm and 106 µm) and different water contents (30%, 40%, 50%, 60%) were analyzed using an energy-dispersive X-ray spectrometer (EDXRF). The results show that the relative error of measurement varies with the particle size of the analyzed sample, the water content and the element measured. The relative error increases with the increase of the particle size for the compounds P2O5, Al2O3, K2O, Cr2O3, Fe2O3 and Sr. The ratio between the relative errors related to the maximum and minimum grain sizes was 1.50 for P2O5, 4.01 for Al2O3, 15.58 for K2O, 1.22 for Cr2O3, 1.51 for Fe2O3 and 1.11 for Sr. Alternatively, an opposite evolution has been observed in the case of compounds CaO and SiO2. The relative error increases with increasing water content for all compounds existing in the slurry. Depending on the measured compound, the relative error increases by a factor that varies between 1.39 and 2.39. In the case of P2O5, the results do not show a clear correlation between the measurement error and the water content. A study will be conducted to investigate the effect of particle size and water content on XRF measurements in the case of phosphate slurry, aiming to develop an online XRF analyzer system for phosphate slurry.

2.
Sensors (Basel) ; 22(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684691

ABSTRACT

A flexible sinusoidal-shaped antenna sensor is introduced in this work, which is a modified half-wave dipole that can be used for strain sensing applications. The presented antenna is an improved extension of the previously introduced antenna sensor for respiration monitoring. The electrical and radiative characteristics of the sinusoidal antenna and the effects of the geometrical factors are studied. An approach is provided for designing the antenna, and equations are introduced to estimate the geometrical parameters based on desired electrical specifications. It is shown that the antenna sensor can be designed to have up to 5.5 times more sensitivity compared to the last generation of the antenna sensor previously introduced for respiration monitoring. The conductive polymer material used to fabricate the new antenna makes it more flexible and durable compared to the previous generation of antenna sensors made of glass-based material. Finally, a reference antenna made of copper and an antenna sensor made of the conductive polymer are fabricated, and their electrical characteristics are analyzed in free space and over the body.


Subject(s)
Wearable Electronic Devices , Electric Conductivity , Electricity , Monitoring, Physiologic , Polymers
3.
J Chem Phys ; 156(8): 084303, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232202

ABSTRACT

Vibronic spectra of lutetium oxide (LuO) seeded in supersonic molecule beams are investigated with mass-analyzed threshold ionization (MATI) spectroscopy and second-order multiconfigurational quasi-degenerate perturbation (MCQDPT2) theory. Six states of LuO and four states of LuO+ are located by the MCQDPT2 calculations, and an a3Π(LuO+) ← C2Σ+ (LuΟ) transition is observed by the MATI measurement. The vibronic spectra show abnormal vibrational intervals for both the neural and cation excited states, and the abnormality is attributed to vibrational perturbations induced by interactions with neighboring states.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4373-4376, 2020 07.
Article in English | MEDLINE | ID: mdl-33018964

ABSTRACT

A new multi-material polymer fiber electrode has been developed for smart clothing applications. The conductive fiber is optimized for bipotential measurements such as surface electromyogram (sEMG) and electrocardiogram (ECG). The main benefit of this fiber is its flexibility and being a dry and non-obtrusive electrode. It can be directly integrated into a garment to make a smart textile for real time biopoten-tial monitoring. A customized wireless electronic system has been developed to acquire electrophysiological signal from the fiber. The receiver base station is connected to a PC host running Matlab. The multi-material polymer fiber electrode recording setting were first optimized in length and inter-electrode distance by recording different sEMG signals. The typical sEMG signal to noise ratio ranges from 19.1 dB to 33.9 dB depending on the geometry. These value are comparable with those obtained with Ag/AgCl electrodes and dry electrode-base commercial system such as Delsys Trigno. The frequency domain analysis obtained from the power spectral density reveals that the new flexible fiber-electrode enables high sEMG signals recording quality while being suitable for integration in smart clothing fabric. A muscle fatigue analysis and ECG recording are also presented in this study. The multi-material polymer fiber electrodes demonstrate a viable solution for sEMG and ECG data acquisition.


Subject(s)
Polymers , Textiles , Dietary Fiber , Electric Conductivity , Electrodes
5.
Micromachines (Basel) ; 9(10)2018 Oct 13.
Article in English | MEDLINE | ID: mdl-30424450

ABSTRACT

In this paper, we present a new FTIR-based microfluidic system for Glucose, Fructose and Sucrose detection. The proposed microfluidic system is based on a pseudo-continuous flow coupled to a microscope-FTIR instrument. The detection and characterization of sugar samples were performed by recording their absorption spectrum in the wavelength range 700⁻1000 cm - 1 of the Mid-IR region. The proposed pseudo-continuous flow system is designed to improve the uniformity of the sample distribution in the analyzed area versus conventional systems. The obtained results for different sugars concentrations, show a very low measurement error of 4.35% in the absorption peak intensity, which is ten times lower than the error obtained using the conventional measurements.

6.
Sensors (Basel) ; 18(4)2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29587396

ABSTRACT

In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual's breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user's comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI) which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16-1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

7.
J Synchrotron Radiat ; 23(Pt 4): 887-900, 2016 07.
Article in English | MEDLINE | ID: mdl-27359137

ABSTRACT

A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

8.
J Phys Chem A ; 120(26): 4482-9, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27322131

ABSTRACT

La(C2H2) and La(C4H6) are observed from the reaction of laser-vaporized La atoms with ethylene molecules by photoionization time-of-flight mass spectrometry and characterized by mass-analyzed threshold ionization spectroscopy. La(C2H2) is identified as a metallacyclopropene and La(C4H6) as a metallacyclopentene. The three-membered ring is formed by concerted H2 elimination and the five-membered cycle by dehydrogenation and C-C bond coupling. Both metallacycles prefer a doublet ground state with a La 6s-based unpaired electron. Ionization of the neutral doublet state of either complex produces a singlet ion state by removing the La-based electron. The ionization allows accurate measurements of the adiabatic ionization energy of the neutral doublet state and metal-ligand and ligand-based vibrational frequencies of the neutral and ionic states. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon cycles are lower than that of the neutral La atom. Deuteration has a small effect on the ionization energies of the two cyclic radicals but distinctive effects on their vibrational frequencies.

9.
J Chem Phys ; 142(18): 184305, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25978889

ABSTRACT

The A˜(2)E(″)←X˜(2)A2 (') spectrum of NO3 radical from 7550 cm(-1) to 9750 cm(-1) has been recorded and analyzed. Our spectrum differs from previously recorded spectra of this transition due to jet-cooling, which narrows the rotational contours and eliminates spectral interference from hot bands. Assignments of numerous vibronic features can be made based on both band contour and position including the previously unassigned 30 (1) band and several associated combination bands. We have analyzed our spectrum first with an independent anharmonic oscillator model and then by a quadratic Jahn-Teller vibronic coupling model. The fit achieved with the quadratic Jahn-Teller model is excellent, but the potential energy surface obtained with the fitted parameters is in only qualitative agreement with one obtained from ab initio calculations.

10.
J Phys Chem A ; 119(12): 2857-62, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25734787

ABSTRACT

η(2)-Propadienylidenelanthanum [La(η(2)-CCCH2)] and deprotiolanthanacyclobutadiene [La(HCCCH)] of La(C3H2) are identified from the reaction mixture of neutral La atom activation of propyne in the gas phase. The two isomers are characterized with mass-analyzed threshold ionization spectroscopy combined with electronic structure calculations and spectral simulations. La(η(2)-CCCH2) and La(HCCCH) are formed by concerted 1,3- and 3,3-dehydrogenation, respectively. Both isomers prefer a doublet ground state with a La 6s-based unpaired electron, and La(η(2)-CCCH2) is slightly more stable than La(HCCCH). Ionization of the neutral doublet state of either isomer produces a singlet ion state by removing the La-based electron. The geometry change upon ionization results in the excitation of a symmetric metal-hydrocarbon stretching mode in the ionic state, whereas thermal excitation leads to the observation of the same stretching mode in the neutral state. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon radicals are lower than that of the neutral La atom. Deuteration has a very small effect on the ionization energies of the two isomers and the metal-hydrocarbon stretching mode of La(η(2)-CCCH2), but it reduces considerably the metal-ligand stretching frequencies of La(HCCCH).

11.
J Phys Chem A ; 118(51): 11852-70, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25054866

ABSTRACT

Recently we published [ Liu et al. J. Chem. Phys. 2013 , 139 , 154312 ] an analysis of the rotational structure of the B̃-X̃ origin band spectrum of isopropoxy, which confirmed that the double methyl substitution of methoxy to yield the isopropoxy radical only slightly lifted the degeneracy of the former's X̃(2)E state. Additionally the spectral results provided considerable insight into the relativistic and nonrelativistic contributions to the experimental splitting between the components of the (2)E state. However, left unexplained was how the Jahn-Teller (JT) vibronic coupling terms within methoxy's (2)E state manifest themselves as pseudo-Jahn-Teller (pJT) vibronic coupling between the Ã(2)A″ and X̃(2)A' levels of isopropoxy. To cast additional light on this subject we have obtained new isopropoxy spectra and assigned a number of weak, "forbidden" vibronic transitions in the B̃-X̃ spectrum using new electronic structure calculations and rotational contour analyses. The mechanisms that provide the nonzero probability for these transitions shed considerable information on pJT, spin-orbit, and Coriolis coupling between the à and X̃ states. We also report a novel mechanism caused by pJT coupling that yields excitation probability to the B̃ state dependent upon the permanent dipole moments in the B̃ and à or X̃ states. By combining a new B̃-à and the earlier B̃-X̃ rotational analyses we determine a much improved value for the experimental Ã-X̃ separation.

12.
J Chem Phys ; 138(22): 224304, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23781792

ABSTRACT

Group 3 metal-aniline complexes, M(aniline) (M = Sc, Y, and La), are produced in a pulsed laser-vaporization molecular beam source, identified by photoionization time-of-flight mass spectrometry, and investigated by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and quantum chemical calculations. Adiabatic ionization energies and several low-frequency vibrational modes are measured for the first time from the ZEKE spectra. Metal binding sites and electronic states are determined by combining the ZEKE measurements with the theoretical calculations. The ionization energies of the complexes decrease down the metal group. An out-of-plane ring deformation mode coupled with an asymmetric metal-carbon stretch is considerably anharmonic. Although aniline has various possible sites for metal coordination, the preferred site is the phenyl ring. The metal binding with the phenyl ring yields syn and anti conformers with the metal atom and amino hydrogens on the same and opposite sides of the ring, respectively. The anti conformer is determined to be the spectral carrier. The ground electronic state of the anti conformer of each neutral complex is a doublet with a metal-based electron configuration of nd(2)(n + 1)s(1), and the ground electronic state of each ion is a singlet with a metal-based electron configuration of nd(2). The formation of the neutral complexes requires the nd(2)(n + 1)s(1) ← nd(1)(n + 1)s(2) electron excitation in the metal atoms.

13.
J Chem Phys ; 138(16): 164307, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23635138

ABSTRACT

Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.


Subject(s)
Cyclooctanes/chemistry , Electrons , Lanthanoid Series Elements/chemistry , Organometallic Compounds/chemistry , Kinetics , Quantum Theory , Spectrum Analysis
14.
J Chem Phys ; 136(13): 134310, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22482555

ABSTRACT

Monobenzene complexes of yttrium (Y), lanthanum (La), and lutetium (Lu), M(C(6)H(6)) (M = Y, La, and Lu), were prepared in a laser-vaporization supersonic molecular beam source and studied by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and ab initio calculations. The calculations included the second-order perturbation, the coupled cluster with single, double, and perturbative triple excitation, and the complete active space self-consistent field methods. Adiabatic ionization energies and metal-benzene stretching frequencies of these complexes were measured for the first time from the ZEKE spectra. Electronic states of the neutral and ion complexes and benzene ring deformation were determined by combining the spectroscopic measurements with the theoretical calculations. The ionization energies of M(C(6)H(6)) are 5.0908 (6), 4.5651 (6), and 5.5106 (6) eV, and the metal-ligand stretching frequencies of [M(C(6)H(6))](+) are 328, 295, and 270 cm(-1) for M = Y, La, and Lu, respectively. The ground states of M(C(6)H(6)) and [M(C(6)H(6))](+) are (2)A(1) and (1)A(1), respectively, and their molecular structures are in C(2v) point group with a bent benzene ring. The deformation of the benzene ring upon metal coordination is caused by the pseudo Jahn-Teller interaction of (1(2)E(2)+1(2)A(1)+2(2)E(2)) e(2) at C(6v) symmetry. In addition, the study shows that spectroscopic behaviors of Y(C(6)H(6)) and La(C(6)H(6)) are similar to each other, but different from that of Lu(C(6)H(6)).

15.
J Phys Chem A ; 116(2): 839-45, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22200405

ABSTRACT

Gadolinium (Gd) complexes of benzene (C(6)H(6)) and (1,3,5,7-cyclooctatetraene) (C(8)H(8)) were produced in a laser-vaporization supersonic molecular beam source and studied by single-photon pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy. Adiabatic ionization energies and metal-ligand stretching frequencies were measured for the first time from the ZEKE spectra. Metal-ligand bonding and electronic states of the neutral and cationic complexes were analyzed by combining the spectroscopic measurements with ab initio calculations. The ground states of Gd(C(6)H(6)) and [Gd(C(6)H(6))](+) were determined as (11)A(2) and (10)A(2), respectively, with C(6v) molecular symmetry. The ground states of Gd(C(8)H(8)) and [Gd(C(8)H(8))](+) were identified as (9)A(2) and (8)A(2), respectively, with C(8v) molecular symmetry. Although the metal-ligand bonding in Gd(C(6)H(6)) is dominated by the covalent interaction, the bonding in Gd(C(8)H(8)) is largely electrostatic. The bonding in the benzene complex is much weaker than that in the cyclooctatetraene species. The strong bonding in Gd(C(8)H(8)) arises from two-electron transfer from Gd to C(8)H(8), which creates a strong charge-charge interaction and converts the tub-shaped ligand into a planar form. In both systems, Gd 4f orbitals are localized and play little role in the bonding, but they contribute to the high electron spin multiplicities.


Subject(s)
Benzene/chemistry , Cyclooctanes/chemistry , Electrons , Gadolinium/chemistry , Organometallic Compounds/chemistry , Binding Sites , Ligands
16.
J Chem Phys ; 127(5): 054307, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17688340

ABSTRACT

In this work, we have extended our previous high resolution study of the vacuum ultraviolet emission spectrum of the D2 molecule [M. Roudjane, et al. J. Chem. Phys. 125, 214305 (2006)] up to 124.2 nm in order to investigate the B' 1Sigmau+-->X 1Sigmag+ band system. The analysis of the spectrum has been carried out by means of a complex spectrum visual identification code IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656, (1993)] and supported by theoretical calculations using ab initio data [L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); G. Staszewska and L. Wolniewicz, J. Mol. Spectrosc. 212, 208 (2002); L. Wolniewicz and G. Staszewska, 220, 45 (2003)] which provided level energies and transition probabilities. More than 1480 new emission lines have been observed and 109 bands belonging to the B' 1Sigmau+-->X 1Sigmag+ system have been identified between 84.1 and 121.6 nm. Except for the upsilon'-0 bands that were reported in absorption [I. Dabrowski and G. Herzberg, Can. J. Phys. 52, 1110 (1974)], all the upsilon'-upsilon" bands are reported here for the first time. The analysis led to the determination of 111 rovibronic energy levels in the B' 1Sigmau+ state, of which 31 with higher rotational numbers J are new. Observed perturbations are accounted for through a set of coupled equations involving the four excited electronic states B 1Sigmau+, B' 1Sigmau+, C 1Piu, and D 1Piu and including nonadiabatic couplings. The solution of this set provides the percent contribution of these four states to each of the observed rovibronic level.

17.
J Chem Phys ; 125(21): 214305, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17166019

ABSTRACT

The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...