Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 13(11)2021 11 21.
Article in English | MEDLINE | ID: mdl-34835131

ABSTRACT

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans. Results were compared to COVID-19 subjects and healthy blood donors from the United States. Prior to the pandemic, Sierra Leoneans had more frequent exposures than Americans to coronaviruses with epitopes that cross-react with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), SARS-CoV, and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). The percentage of Sierra Leoneans with antibodies reacting to seasonal coronaviruses was also higher than for American blood donors. Serological responses to coronaviruses by Sierra Leoneans did not differ by age or sex. Approximately a quarter of Sierra Leonian pre-pandemic blood samples had neutralizing antibodies against SARS-CoV-2 pseudovirus, while about a third neutralized MERS-CoV pseudovirus. Prior exposures to coronaviruses that induce cross-protective immunity may contribute to reduced COVID-19 cases and deaths in Sierra Leone.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Age Distribution , Alphacoronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/immunology , Blood Donors , Coronavirus Nucleocapsid Proteins/immunology , Cross Protection , Cross Reactions , Epitopes , Female , Humans , Male , Phosphoproteins/immunology , Sierra Leone , United States , Viral Pseudotyping
2.
J Clin Virol Plus ; 1(4): 100047, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35262027

ABSTRACT

Serologic testing of residual blood samples from 812 children from a hospital in New Orleans, LA, between March and May 2020, demonstrated a SARS-CoV-2 seroprevalence of 6.8% based on S and N protein IgG; Black and Hispanic children, and children living in zip codes with lower household incomes were over-represented.

3.
PLoS Pathog ; 13(1): e1006074, 2017 01.
Article in English | MEDLINE | ID: mdl-28076415

ABSTRACT

A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/genetics , HIV Antibodies/immunology , HIV Antigens/ultrastructure , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Immune Evasion/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/isolation & purification , Binding Sites, Antibody/immunology , CD4 Antigens/pharmacology , Cell Line, Tumor , Complementarity Determining Regions/genetics , Crystallography, X-Ray , Epitopes/immunology , Glycosylation , HIV Antibodies/isolation & purification , HIV Antigens/genetics , HIV Antigens/immunology , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/genetics , HIV Infections/immunology , HIV-1/genetics , HeLa Cells , Humans , Immune Evasion/immunology , Neutralization Tests , Recombinant Proteins/pharmacology
4.
Nat Commun ; 7: 11544, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27161536

ABSTRACT

Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Lassa virus/immunology , Antibody Specificity , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Arenavirus/immunology , Cross Reactions , Epitope Mapping , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Lassa Fever/immunology , Lassa Fever/prevention & control , Lassa virus/genetics , Models, Molecular , Mutagenesis, Site-Directed , Sequence Deletion , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL