Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Insects ; 13(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36555003

ABSTRACT

Insecticides reduce the spread of mosquito-borne disease. Over the past century, mosquito control has mostly relied on neurotoxic chemicals-such as pyrethroids, neonicotinoids, chlorinated hydrocarbons, carbamates and organophosphates-that target adults. However, their persistent use has selected for insecticide resistance. This has led to the application of progressively higher amounts of insecticides-known as the pesticide treadmill-and negative consequences for ecosystems. Comparatively less attention has been paid to larvae, even though larval death eliminates a mosquito's potential to transmit disease and reproduce. Larvae have been targeted by source reduction, biological control, growth regulators and neurotoxins, but hurdles remain. Here, we review methods of mosquito control and argue that photoactive molecules that target larvae-called photosensitive insecticides or PSIs-are an environmentally friendly addition to our mosquitocidal arsenal. PSIs are ingested by larvae and produce reactive oxygen species (ROS) when activated by light. ROS then damage macromolecules resulting in larval death. PSIs are degraded by light, eliminating environmental accumulation. Moreover, PSIs only harm small translucent organisms, and their broad mechanism of action that relies on oxidative damage means that resistance is less likely to evolve. Therefore, PSIs are a promising alternative for controlling mosquitoes in an environmentally sustainable manner.

2.
Plant J ; 90(6): 1029-1039, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28321931

ABSTRACT

We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plants, Genetically Modified/metabolism , Seeds/metabolism , Valine/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Germination/genetics , Germination/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Seeds/genetics , Seeds/physiology
3.
Article in English | MEDLINE | ID: mdl-27836744

ABSTRACT

Inward rectifier potassium (Kir) channels play fundamental roles in neuromuscular, epithelial, and endocrine function in mammals. Recent research in insects suggests that Kir channels play critical roles in the development, immune function, and excretory physiology of fruit flies and/or mosquitoes. Moreover, our group has demonstrated that mosquito Kir channels may serve as valuable targets for the development of novel insecticides. Here we characterize the molecular expression of 5 mRNAs encoding Kir channel subunits in the yellow fever mosquito, Aedes aegypti: Kir1, Kir2A-c, Kir2B, Kir2B', and Kir3. We demonstrate that 1) Kir mRNA expression is dynamic in whole mosquitoes, Malpighian tubules, and the midgut during development from 4th instar larvae to adult females, 2) Kir2B and Kir3 mRNA levels are reduced in 4th instar larvae when reared in water containing an elevated concentration (50mM) of KCl, but not NaCl, and 3) Kir mRNAs are differentially expressed in the Malpighian tubules, midgut, and ovaries within 24h after blood feeding. Furthermore, we provide the first characterization of Kir mRNA expression in the anal papillae of 4th instar larval mosquitoes, which indicates that Kir2A-c is the most abundant. Altogether, the data provide the first comprehensive characterization of Kir mRNA expression in Ae. aegypti and offer insights into the putative physiological roles of Kir subunits in this important disease vector.


Subject(s)
Aedes/genetics , Gene Expression Regulation, Developmental , Potassium Channels, Inwardly Rectifying/genetics , Protein Subunits/genetics , Yellow Fever/transmission , Aedes/growth & development , Aedes/physiology , Animals , Blood/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Developmental/drug effects , Larva/drug effects , Larva/genetics , Potassium/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sodium/pharmacology
4.
Insect Biochem Mol Biol ; 67: 59-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26079629

ABSTRACT

Malpighian tubules of adult female yellow fever mosquitoes Aedes aegypti express three inward rectifier K(+) (Kir) channel subunits: AeKir1, AeKir2B and AeKir3. Here we 1) elucidate the cellular and membrane localization of these three channels in the Malpighian tubules, and 2) characterize the effects of small molecule inhibitors of AeKir1 and AeKir2B channels (VU compounds) on the transepithelial secretion of fluid and electrolytes and the electrophysiology of isolated Malpighian tubules. Using subunit-specific antibodies, we found that AeKir1 and AeKir2B localize exclusively to the basolateral membranes of stellate cells and principal cells, respectively; AeKir3 localizes within intracellular compartments of both principal and stellate cells. In isolated tubules bathed in a Ringer solution containing 34 mM K(+), the peritubular application of VU590 (10 µM), a selective inhibitor of AeKir1, inhibited transepithelial fluid secretion 120 min later. The inhibition brings rates of transepithelial KCl and fluid secretion to 54% of the control without a change in transepithelial NaCl secretion. VU590 had no effect on the basolateral membrane voltage (Vbl) of principal cells, but it significantly reduced the cell input conductance (gin) to values 63% of the control within ∼90 min. In contrast, the peritubular application of VU625 (10 µM), an inhibitor of both AeKir1 and AeKir2B, started to inhibit transepithelial fluid secretion as early as 60 min later. At 120 min after treatment, VU625 was more efficacious than VU590, inhibiting transepithelial KCl and fluid secretion to ∼35% of the control without a change in transepithelial NaCl secretion. Moreover, VU625 caused the Vbl and gin of principal cells to respectively drop to values 62% and 56% of the control values within only ∼30 min. Comparing the effects of VU590 with those of VU625 allowed us to estimate that AeKir1 and AeKir2B respectively contribute to 46% and 20% of the transepithelial K(+) secretion when the tubules are bathed in a Ringer solution containing 34 mM K(+). Thus, we uncover an important role of AeKir1 and stellate cells in transepithelial K(+) transport under conditions of peritubular K(+) challenge. The physiological role of AeKir3 in intracellular membranes of both stellate and principal cells remains to be determined.


Subject(s)
Aedes/metabolism , Malpighian Tubules/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium/metabolism , Aedes/drug effects , Animals , Biological Transport/drug effects , Female , Heterocyclic Compounds, 1-Ring/pharmacology , Malpighian Tubules/drug effects , Membrane Potentials , Potassium Channels, Inwardly Rectifying/drug effects , Potassium Chloride/metabolism , Sodium Chloride/metabolism
5.
PLoS One ; 9(11): e110772, 2014.
Article in English | MEDLINE | ID: mdl-25375326

ABSTRACT

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening 'hits', the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compound's bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides.


Subject(s)
Aedes/drug effects , Insecticides/pharmacology , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , Drug Interactions , HEK293 Cells , Humans , Oocytes/drug effects , Probenecid/pharmacology , Xenopus
6.
PLoS One ; 9(8): e104444, 2014.
Article in English | MEDLINE | ID: mdl-25105592

ABSTRACT

MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.


Subject(s)
Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Alternative Splicing , Cell Cycle Checkpoints , Cell Line, Tumor , DNA Damage , Humans , Neoplasms/genetics , Neoplasms/metabolism , Protein Interaction Maps , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/genetics , Transcriptional Activation
7.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R837-49, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25056103

ABSTRACT

The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. The rapid onset and magnitude of this diuresis and the excretion of more Na(+) than can be accounted for by tubular secretion in vitro is consistent with the release of the calcitonin-like diuretic hormone in the mosquito to remove the Na(+) load from the hemolymph. Downstream, K(+) was reabsorbed with water in the hindgut, which concentrated Na(+) in excreted urine hyperosmotic to the hemolymph. Upon K(+) loading the hemolymph, the mosquito took 2 h to remove 100% of the injected K(+) from the hemolymph. The excretion of K(+)-rich isosmotic urine was limited to clearing the injected K(+) from the hemolymph with a minimum of Cl(-) and water. As a result, 43.3% of the injected Cl(-) and 48.1% of the injected water were conserved. The cation retained in the hemolymph with Cl(-) was probably N-methyl-d-glucamine, which replaced Na(+) in the hemolymph injection of the K(+) load. Since the tubular secretion of K(+) accounts for the removal of the K(+) load from the hemolymph, the reabsorption of K(+), Na(+), Cl(-), and water must be inhibited in the hindgut. The agents mediating this inhibition are unknown.


Subject(s)
Malpighian Tubules/metabolism , Potassium Chloride/metabolism , Sodium Chloride/metabolism , Sodium/metabolism , Animals , Body Fluids/physiology , Culicidae , Diuresis/physiology , Ion Transport/physiology , Potassium Chloride/pharmacology , Sodium Chloride/pharmacology
8.
Am J Physiol Regul Integr Comp Physiol ; 307(7): R850-61, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25056106

ABSTRACT

The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 µM) had no effect on the transepithelial secretion of Na(+), K(+), Cl(-), and water. In contrast, 10 µM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na(+)-rich or K(+)-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K(+) channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 µM had no effect on the diuresis triggered by hemolymph Na(+) or K(+) loads. VU342 at a hemolymph concentration of 420 µM had no effect on the diuresis elicited by hemolymph Na(+) or K(+) loads. In contrast, the same concentration of VU573 significantly diminished the Na(+) diuresis by inhibiting the urinary excretion of Na(+), Cl(-), and water. In K(+)-loaded mosquitoes, 420 µM VU573 significantly diminished the K(+) diuresis by inhibiting the urinary excretion of K(+), Na(+), Cl(-), and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na(+) and K(+) loads, and 2) at a hemolymph concentration of 420 µM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones.


Subject(s)
Benzimidazoles/pharmacology , Imines/pharmacology , Potassium Chloride/metabolism , Sodium Chloride/metabolism , Aedes , Animals , Biological Transport/drug effects , Bumetanide , Hemolymph/metabolism , Hormones/metabolism , Isotonic Solutions , Malpighian Tubules/drug effects , Malpighian Tubules/metabolism , Membrane Potentials/drug effects , Potassium/metabolism , Ringer's Solution , Sodium/metabolism
9.
PLoS One ; 9(6): e100700, 2014.
Article in English | MEDLINE | ID: mdl-24959745

ABSTRACT

Mosquitoes are important disease vectors that transmit a wide variety of pathogens to humans, including those that cause malaria and dengue fever. Insecticides have traditionally been deployed to control populations of disease-causing mosquitoes, but the emergence of insecticide resistance has severely limited the number of active compounds that are used against mosquitoes. Thus, to improve the control of resistant mosquitoes there is a need to identify new insecticide targets and active compounds for insecticide development. Recently we demonstrated that inward rectifier potassium (Kir) channels and small molecule inhibitors of Kir channels offer promising new molecular targets and active compounds, respectively, for insecticide development. Here we provide pharmacological validation of a specific mosquito Kir channel (AeKir1) in the yellow fever mosquito Aedes aegypti. We show that VU590, a small-molecule inhibitor of mammalian Kir1.1 and Kir7.1 channels, potently inhibits AeKir1 but not another mosquito Kir channel (AeKir2B) in vitro. Moreover, we show that a previously identified inhibitor of AeKir1 (VU573) elicits an unexpected agonistic effect on AeKir2B in vitro. Injection of VU590 into the hemolymph of adult female mosquitoes significantly inhibits their capacity to excrete urine and kills them within 24 h, suggesting a mechanism of action on the excretory system. Importantly, a structurally-related VU590 analog (VU608), which weakly blocks AeKir1 in vitro, has no significant effects on their excretory capacity and does not kill mosquitoes. These observations suggest that the toxic effects of VU590 are associated with its inhibition of AeKir1.


Subject(s)
Aedes/drug effects , Aedes/metabolism , Insecticides/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Aedes/genetics , Aedes/virology , Animals , Cell Line , Female , Gene Expression , Humans , Inhibitory Concentration 50 , Insecticides/chemistry , Oocytes/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Yellow Fever/transmission , Yellow fever virus
10.
Insect Biochem Mol Biol ; 51: 10-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24855023

ABSTRACT

Inward rectifier potassium (Kir) channels play essential roles in regulating diverse physiological processes. Although Kir channels are encoded in mosquito genomes, their functions remain largely unknown. In this study, we identified the members of the Anopheles gambiae Kir gene family and began to investigate their function. Notably, we sequenced the A. gambiae Kir1 (AgKir1) gene and showed that it encodes all the canonical features of a Kir channel: an ion pore that is composed of a pore helix and a selectivity filter, two transmembrane domains that flank the ion pore, and the so-called G-loop. Heterologous expression of AgKir1 in Xenopus oocytes revealed that this gene encodes a functional, barium-sensitive Kir channel. Quantitative RT-PCR experiments then showed that relative AgKir1 mRNA levels are highest in the pupal stage, and that AgKir1 mRNA is enriched in the adult ovaries. Gene silencing of AgKir1 by RNA interference did not affect the survival of female mosquitoes following a blood meal, but decreased their egg output. These data provide evidence for a new role of Kir channels in mosquito fecundity, and further validates them as promising molecular targets for the development of a new class of mosquitocides to be used in vector control.


Subject(s)
Anopheles/metabolism , Anopheles/physiology , Potassium Channels, Inwardly Rectifying , Amino Acid Sequence , Animals , Base Sequence , Female , Molecular Sequence Data , Oocytes/metabolism , Oocytes/physiology , Ovary/metabolism , Ovary/physiology , Ovum , Pupa/metabolism , Pupa/physiology , RNA Interference , Xenopus laevis
11.
Insect Biochem Mol Biol ; 48: 91-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24657620

ABSTRACT

Inward-rectifier potassium (Kir) channels play key roles in nerve, muscle, and epithelial cells in mammals, but their physiological roles in insects remain to be determined. The yellow fever mosquito (Aedes aegypti) possesses five different genes encoding Kir channel subunits: Kir1, Kir2A, Kir2B, Kir2B', and Kir3. We have recently cloned and characterized the Kir1, Kir2B, and Kir3 cDNAs in the renal (Malpighian) tubules of adult female Ae. aegypti. Here we characterize the expression of the Kir2A gene in Ae. aegypti, which was not abundantly expressed in Malpighian tubules. We find that the 1) Kir2A gene is expressed primarily in the midgut and hindgut of adult female mosquitoes, and 2) Kir2A mRNAs are alternatively spliced into three distinct variants (Kir2A-a, -b, and -c). The deduced Kir2A proteins from these splice forms share a completely conserved transmembrane domain (a pore-forming domain flanked by two transmembrane-spanning segments), but possess novel NH2-terminal and/or COOH-terminal domains. Semi-quantitative RT-PCR analyses indicate that the splice variants exhibit both developmental- and tissue-specific expression. Lastly, we provide insights into the conservation of alternative splicing among the Kir2A genes of dipterans, which may add molecular diversity that compensates for the relatively limited number of Kir channel genes in insects compared to mammals.


Subject(s)
Aedes/genetics , Potassium Channels, Inwardly Rectifying/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Female , Gastrointestinal Tract , Life Cycle Stages , Molecular Sequence Data , Protein Isoforms
12.
PLoS One ; 8(5): e64905, 2013.
Article in English | MEDLINE | ID: mdl-23734226

ABSTRACT

Mosquito-borne diseases such as malaria and dengue fever take a large toll on global health. The primary chemical agents used for controlling mosquitoes are insecticides that target the nervous system. However, the emergence of resistance in mosquito populations is reducing the efficacy of available insecticides. The development of new insecticides is therefore urgent. Here we show that VU573, a small-molecule inhibitor of mammalian inward-rectifying potassium (Kir) channels, inhibits a Kir channel cloned from the renal (Malpighian) tubules of Aedes aegypti (AeKir1). Injection of VU573 into the hemolymph of adult female mosquitoes (Ae. aegypti) disrupts the production and excretion of urine in a manner consistent with channel block of AeKir1 and renders the mosquitoes incapacitated (flightless or dead) within 24 hours. Moreover, the toxicity of VU573 in mosquitoes (Ae. aegypti) is exacerbated when hemolymph potassium levels are elevated, suggesting that Kir channels are essential for maintenance of whole-animal potassium homeostasis. Our study demonstrates that renal failure is a promising mechanism of action for killing mosquitoes, and motivates the discovery of selective small-molecule inhibitors of mosquito Kir channels for use as insecticides.


Subject(s)
Aedes/growth & development , Insect Proteins/antagonists & inhibitors , Malpighian Tubules/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Aedes/genetics , Aedes/metabolism , Animals , Anopheles/growth & development , Anopheles/metabolism , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Culex/growth & development , Culex/metabolism , Dose-Response Relationship, Drug , Female , HEK293 Cells , Hemolymph/drug effects , Hemolymph/metabolism , Humans , Imines/chemistry , Imines/metabolism , Imines/pharmacology , Insect Proteins/genetics , Insect Proteins/physiology , Insecticides/chemistry , Insecticides/pharmacology , Malpighian Tubules/metabolism , Malpighian Tubules/pathology , Membrane Potentials/drug effects , Molecular Structure , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channel Blockers/chemistry , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/physiology
13.
Insect Biochem Mol Biol ; 43(1): 75-90, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085358

ABSTRACT

Inward-rectifying K(+) (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K(+) currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na(+). Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl(+) > K(+) > Rb(+) > NH(4)(+)) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K(+).


Subject(s)
Aedes/metabolism , Insect Proteins/metabolism , Malpighian Tubules/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Aedes/genetics , Amino Acid Sequence , Animals , Barium , Cloning, Molecular , DNA, Complementary , Female , Genes, Insect , Insect Proteins/genetics , Isotonic Solutions , Membrane Potentials , Molecular Sequence Data , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Ringer's Solution , Sodium/metabolism , Xenopus
14.
Biochemistry ; 49(37): 8228-36, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20715794

ABSTRACT

Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5-2-fold increase in k(cat) and a decrease in K(m) as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and (1)H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme-substrate contacts, with tyrosine 255 being particularly important.


Subject(s)
Lactoylglutathione Lyase/metabolism , Metals/chemistry , Arabidopsis/enzymology , Arabidopsis/metabolism , Catalysis , Glutathione/analogs & derivatives , Histidine , Humans , Kinetics , Magnetic Resonance Spectroscopy , Metals/analysis , Substrate Specificity , Thiolester Hydrolases
15.
Arch Biochem Biophys ; 465(1): 26-37, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17570335

ABSTRACT

In this study, the product of the CIT3 gene has been identified as a dual specificity mitochondrial citrate and methylcitrate synthase and that of the CIT1 gene as a specific citrate synthase. Recombinant Cit1p had catalytic activity only with acetyl-CoA whereas Cit3p had similar catalytic efficiency with both acetyl-CoA and propionyl-CoA. Deletion of CIT1 dramatically shifted the ratio of these two activities in whole cell extracts towards greater methylcitrate synthase. Deletion of CIT3 had little effect on either citrate or methylcitrate synthase activities. A Deltacit2Deltacit3 strain showed no methylcitrate synthase activity, suggesting that Cit2p, a peroxisomal isoform, may also have methylcitrate synthase activity. Although wild-type strains of Saccharomyces cerevisiae did not grow with propionate as a sole carbon source, deletion of CIT2 allowed growth on propionate, suggesting a toxic production of methylcitrate in the peroxisomes of wild-type cells. The Deltacit2Deltacit3 double mutant did not grow on propionate, providing further evidence for the role of Cit3p in propionate metabolism. (13)C NMR analysis showed the metabolism of 2-(13)C-propionate to acetate, pyruvate, and alanine in wild-type, Deltacit1 and Deltacit2 cells, but not in the Deltacit3 mutant. (13)C NMR and GC-MS analysis of pyruvate metabolism revealed an accumulation of acetate and of isobutanol in the Deltacit3 mutant, suggesting a metabolic alteration possibly resulting from inhibition of the lipoamide acetyltransferase subunit of the pyruvate dehydrogenase complex by propionyl-CoA. In contrast to Deltacit3, pyruvate metabolism in a Deltapda1 (pyruvate dehydrogenase E1 alpha subunit) mutant strain was only shifted towards accumulation of acetate.


Subject(s)
Citrate (si)-Synthase/chemistry , Citrate (si)-Synthase/metabolism , Methylmalonyl-CoA Decarboxylase/metabolism , Mitochondria/enzymology , Saccharomyces cerevisiae/enzymology , Citrate (si)-Synthase/classification , Enzyme Activation , Isoenzymes/chemistry , Isoenzymes/classification , Isoenzymes/metabolism , Methylmalonyl-CoA Decarboxylase/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...