Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Mol Metab ; 54: 101355, 2021 12.
Article in English | MEDLINE | ID: mdl-34634522

ABSTRACT

OBJECTIVES: To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic ß-cell deregulations or defects in the function of insulin target tissues. METHODS: We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. RESULTS: We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the ß-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. CONCLUSION: TAGs emerge as biomarkers of a liver-to-ß-cell axis that links hepatic ß-oxidation to ß-cell functional mass and insulin secretion.


Subject(s)
Insulin-Secreting Cells/metabolism , Triglycerides/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cells, Cultured , Glucose/metabolism , Humans , Insulin Secretion , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Triglycerides/blood
2.
Mol Metab ; 37: 100993, 2020 07.
Article in English | MEDLINE | ID: mdl-32298772

ABSTRACT

OBJECTIVES: Glucose-stimulated insulin secretion is a critical function in the regulation of glucose homeostasis, and its deregulation is associated with the development of type 2 diabetes. Here, we performed a genetic screen using islets isolated from the BXD panel of advanced recombinant inbred (RI) lines of mice to search for novel regulators of insulin production and secretion. METHODS: Pancreatic islets were isolated from 36 RI BXD lines and insulin secretion was measured following exposure to 2.8 or 16.7 mM glucose with or without exendin-4. Islets from the same RI lines were used for RNA extraction and transcript profiling. Quantitative trait loci (QTL) mapping was performed for each secretion condition and combined with transcriptome data to prioritize candidate regulatory genes within the identified QTL regions. Functional studies were performed by mRNA silencing or overexpression in MIN6B1 cells and by studying mice and islets with beta-cell-specific gene inactivation. RESULTS: Insulin secretion under the 16.7 mM glucose plus exendin-4 condition was mapped significantly to a chromosome 2 QTL. Within this QTL, RNA-Seq data prioritized Crat (carnitine O-acetyl transferase) as a strong candidate regulator of the insulin secretion trait. Silencing Crat expression in MIN6B1 cells reduced insulin content and insulin secretion by ∼30%. Conversely, Crat overexpression enhanced insulin content and secretion by ∼30%. When islets from mice with beta-cell-specific Crat inactivation were exposed to high glucose, they displayed a 30% reduction of insulin content as compared to control islets. We further showed that decreased Crat expression in both MIN6B1 cells and pancreatic islets reduced the oxygen consumption rate in a glucose concentration-dependent manner. CONCLUSIONS: We identified Crat as a regulator of insulin secretion whose action is mediated by an effect on total cellular insulin content; this effect also depends on the genetic background of the RI mouse lines. These data also show that in the presence of the stimulatory conditions used the insulin secretion rate is directly related to the insulin content.


Subject(s)
Carnitine O-Acetyltransferase/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Animals , Carnitine O-Acetyltransferase/metabolism , Diabetes Mellitus, Type 2/metabolism , Exenatide/metabolism , Genetic Testing/methods , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred Strains , Quantitative Trait Loci
3.
Neuroendocrinology ; 108(2): 132-141, 2019.
Article in English | MEDLINE | ID: mdl-30326479

ABSTRACT

Endospanin 1 (Endo1), a protein encoded in humans by the same gene than the leptin receptor (ObR), and increased by diet-induced obesity, is an important regulator of ObR trafficking and cell surface exposure, determining leptin signaling strength. Defective intracellular trafficking of the leptin receptor to the neuronal plasma membrane has been proposed as a mechanism underlying the development of leptin resistance observed in human obesity. More recently, Endo1 has emerged as a mediator of "selective leptin resistance." The underlying mechanisms of the latter are not completely understood, but the possibility of differential activation of leptin signaling pathways was suggested among others. In this respect, the expression level of Endo1 is crucial for the appropriate balance between different leptin signaling pathways and leptin functions in the hypothalamus and is likely participating in selective leptin resistance for the control of energy and glucose homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Receptors, Leptin/metabolism
4.
Biochem Pharmacol ; 158: 45-59, 2018 12.
Article in English | MEDLINE | ID: mdl-30236477

ABSTRACT

Neuroplin 1 (NRP1), a transmembrane protein interacting with Vascular Endothelial Growth Factor VEGF-A165 (called here VEGF165) and the tyrosine kinase Receptor 2 (VEGFR2) promote angiogenesis and vascular homeostasis. In a pathophysiological context, several studies suggested that VEGFR2 and NRP1 mediate tumor development and progression. Given the involvement of the VEGF165 network in promoting tumor angiogenesis, NRP1, VEGFR2 and VEGF165 have been identified as targets for anti-angiogenic therapy. No binding assay exists to monitor specifically the binding of VEGF165 to the VEGFR2/NRP1 complex in intact cells. We established a binding assay based on the homogenous time-resolved fluorescence (HTRF®) technology. This unique binding assay enables to assess the interaction of VEGF165 with VEGFR2 or NRP1 within the VEGFR2/NRP1 complex. Ligand binding saturation experiments revealed that VEGF165 binds the VEGFR2/NRP1 complex at the cell surface with a ten to twenty-fold higher affinity compared to SNAP-VEGFR2 or SNAP-NRP1 receptors alone not engaged in the heteromeric complex. The assay allows characterizing the impact of NRP1 ligands on VEGF165 to the complex. It shows high specificity, reproducibility and robustness, making it compatible with high throughput screening (HTS) applications for identifying new VEGF165 antagonists selective for NRP1 or the VEGFR2/NRP1 complex.


Subject(s)
Neuropilin-1/metabolism , TATA Box Binding Protein-Like Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , HEK293 Cells , HeLa Cells , Humans , Protein Binding/drug effects , Protein Binding/physiology , Vascular Endothelial Growth Factor A/pharmacology
6.
Mol Metab ; 6(1): 159-172, 2017 01.
Article in English | MEDLINE | ID: mdl-28123946

ABSTRACT

The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE: Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS: We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS: We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS: Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.


Subject(s)
Carrier Proteins/metabolism , Obesity/metabolism , Receptors, Leptin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight/physiology , Carrier Proteins/physiology , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Homeostasis/drug effects , Hypothalamus/metabolism , Intracellular Signaling Peptides and Proteins , Leptin/metabolism , Leptin/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Receptors, Leptin/physiology , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
7.
Article in English | MEDLINE | ID: mdl-25352831

ABSTRACT

After its discovery in 1994, leptin became the great hope as an anti-obesity treatment based on its ability to reduce food intake and increase energy expenditure. However, treating obese people with exogenous leptin was unsuccessful in most cases since most of them present already high circulating leptin levels to which they do not respond anymore defining the so-called state of "leptin resistance." Indeed, leptin therapy is unsuccessful to lower body weight in commonly obese people but effective in people with rare single gene mutations of the leptin gene. Consequently, treatment of obese people with leptin was given less attention and the focus of obesity research shifted toward the prevention and reversal of the state of leptin resistance. Many of these new promising approaches aim to restore or sensitize the impaired function of the leptin receptor by pharmacological means. The current review will focus on the different emerging therapeutic strategies in obesity research that are related to leptin and its receptor.

SELECTION OF CITATIONS
SEARCH DETAIL
...