Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 39(3): 110708, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443181

ABSTRACT

Understanding the complexities of behavior is necessary to interpret neurophysiological data and establish animal models of neuropsychiatric disease. This understanding requires knowledge of the underlying information-processing structure-something often hidden from direct observation. Commonly, one assumes that behavior is solely governed by the experimenter-controlled rules that determine tasks. For example, differences in tasks that require memory of past actions are often interpreted as exclusively resulting from differences in memory. However, such assumptions are seldom tested. Here, we provide a comprehensive examination of multiple processes that contribute to behavior in a prevalent experimental paradigm. Using a combination of behavioral automation, hypothesis-driven trial design, and reinforcement learning modeling, we show that rats learn a spatial alternation task consistent with their drawing upon spatial preferences in addition to memory. Our approach also distinguishes learning based on established preferences from generalization of task structure, providing further insights into learning dynamics.


Subject(s)
Learning , Reinforcement, Psychology , Animals , Cognition , Learning/physiology , Maze Learning/physiology , Rats
2.
Neuron ; 109(19): 3149-3163.e6, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34450026

ABSTRACT

Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.


Subject(s)
Choice Behavior/physiology , Hippocampus/physiology , Memory/physiology , Space Perception/physiology , Algorithms , Animals , Conditioning, Operant , Electrodes, Implanted , Goals , Linear Models , Male , Maze Learning , Rats , Rats, Long-Evans
3.
J Neural Eng ; 16(6): 066021, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31216526

ABSTRACT

OBJECTIVE: Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH: We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS: We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE: This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication.


Subject(s)
Brain/physiology , Dura Mater/physiology , Electrodes, Implanted , Equipment Design/methods , Microtechnology/methods , Silicon , Animals , Biocompatible Materials , Equipment Design/instrumentation , Male , Microelectrodes , Microtechnology/instrumentation , Rats , Rats, Long-Evans
4.
Neuron ; 90(1): 113-27, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26971950

ABSTRACT

Interactions between the hippocampus and prefrontal cortex (PFC) are critical for learning and memory. Hippocampal activity during awake sharp-wave ripple (SWR) events is important for spatial learning, and hippocampal SWR activity often represents past or potential future experiences. Whether or how this reactivation engages the PFC, and how reactivation might interact with ongoing patterns of PFC activity, remains unclear. We recorded hippocampal CA1 and PFC activity in animals learning spatial tasks and found that many PFC cells showed spiking modulation during SWRs. Unlike in CA1, SWR-related activity in PFC comprised both excitation and inhibition of distinct populations. Within individual SWRs, excitation activated PFC cells with representations related to the concurrently reactivated hippocampal representation, while inhibition suppressed PFC cells with unrelated representations. Thus, awake SWRs mark times of strong coordination between hippocampus and PFC that reflects structured reactivation of representations related to ongoing experience.


Subject(s)
Brain Waves/physiology , CA1 Region, Hippocampal/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Spatial Learning/physiology , Wakefulness/physiology , Animals , Electroencephalography , Hippocampus/physiology , Neural Inhibition , Rats , Rats, Long-Evans
5.
Curr Opin Neurobiol ; 35: 6-12, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26011627

ABSTRACT

Waking and sleeping states are privileged periods for distinct mnemonic processes. In waking behavior, rapid retrieval of previous experience aids memory-guided decision making. In sleep, a gradual series of reactivated associations supports consolidation of episodes into memory networks. Synchronized bursts of hippocampal place cells during events called sharp-wave ripples communicate associated neural patterns across distributed circuits in both waking and sleeping states. Differences between sleep and awake sharp-wave ripples, and in particular the accuracy of recapitulated experience, highlight their state-dependent roles in memory processes.


Subject(s)
Brain Waves/physiology , Hippocampus/physiology , Memory/physiology , Sleep/physiology , Wakefulness/physiology , Animals , Humans
6.
Nat Protoc ; 9(11): 2515-2538, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25275789

ABSTRACT

Cranial window implants in head-fixed rodents are becoming a preparation of choice for stable optical access to large areas of the cortex over extended periods of time. Here we provide a highly detailed and reliable surgical protocol for a cranial window implantation procedure for chronic wide-field and cellular imaging in awake, head-fixed mice, which enables subsequent window removal and replacement in the weeks and months after the initial craniotomy. This protocol has facilitated awake, chronic imaging in adolescent and adult mice over several months from a large number of cortical brain regions; targeted virus and tracer injections from data obtained using prior awake functional mapping; and functionally targeted two-photon imaging across all cortical layers in awake mice using a microprism attachment to the cranial window. Collectively, these procedures extend the reach of chronic imaging of cortical function and dysfunction in behaving animals.


Subject(s)
Craniotomy/methods , Diagnostic Imaging/methods , Animals , Cerebral Cortex , Electroencephalography/instrumentation , Electroencephalography/methods , Equipment Design , Implants, Experimental , Mice, Inbred C57BL , Mice, Transgenic , Skull/surgery , Wakefulness
7.
J Neurosci ; 32(23): 8004-11, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22674275

ABSTRACT

Amyloid-ß (Aß)-induced changes in synaptic function in experimental models of Alzheimer's disease (AD) suggest that Aß generation and accumulation may affect fundamental mechanisms of synaptic plasticity. To test this hypothesis, we examined the effect of APP overexpression on a well characterized, in vivo, developmental model of systems-level plasticity, ocular dominance plasticity. Following monocular visual deprivation during the critical period, mice that express mutant alleles of amyloid precursor protein (APPswe) and Presenilin1 (PS1dE9), as well as mice that express APPswe alone, lack ocular dominance plasticity in visual cortex. Defects in the spatial extent and magnitude of the plastic response are evident using two complementary approaches, Arc induction and optical imaging of intrinsic signals in awake mice. This defect in a classic paradigm of systems level synaptic plasticity shows that Aß overexpression, even early in postnatal life, can perturb plasticity in cerebral cortex, and supports the idea that decreased synaptic plasticity due to elevated Aß exposure contributes to cognitive impairment in AD.


Subject(s)
Alzheimer Disease/physiopathology , Neuronal Plasticity/physiology , Sensory Deprivation/physiology , Synapses/physiology , Vision, Ocular/physiology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Eye Enucleation , Fluorescence , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology , Photic Stimulation , Polymerase Chain Reaction , Presenilin-1/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Visual Cortex/cytology , Visual Cortex/physiology
8.
Neuron ; 72(6): 1025-39, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22196337

ABSTRACT

The mouse is emerging as an important model for understanding how sensory neocortex extracts cues to guide behavior, yet little is known about how these cues are processed beyond primary cortical areas. Here, we used two-photon calcium imaging in awake mice to compare visual responses in primary visual cortex (V1) and in two downstream target areas, AL and PM. Neighboring V1 neurons had diverse stimulus preferences spanning five octaves in spatial and temporal frequency. By contrast, AL and PM neurons responded best to distinct ranges of stimulus parameters. Most strikingly, AL neurons preferred fast-moving stimuli while PM neurons preferred slow-moving stimuli. By contrast, neurons in V1, AL, and PM demonstrated similar selectivity for stimulus orientation but not for stimulus direction. Based on these findings, we predict that area AL helps guide behaviors involving fast-moving stimuli (e.g., optic flow), while area PM helps guide behaviors involving slow-moving objects.


Subject(s)
Brain Mapping/methods , Motion Perception/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...