Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 255: 112735, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32147478

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: An extensive ethnopharmacological survey was carried out in the Peruvian Amazonian district of Loreto with informants of various cultural origins from the surroundings of Iquitos (capital city of Loreto) and from 15 isolated riverine Quechua communities of the Pastaza River. A close attention was paid to the medical context and plant therapy, leading to the selection of 35 plant species (45 extracts). The extracts were tested for antiviral activity against HCV with counting of Huh-7 cellular death in case of toxicity, and cytotoxicity was evaluated in HepG2 cells. AIM OF THE STUDY: The aim of the study was to inventory the plants used against hepatitis in Loreto, then to evaluate their antiviral activity and to suggest a way to improve local therapeutic strategy against viral hepatitis, which is a fatal disease that is still increasing in this area. MATERIALS AND METHODS: An ethnographic survey was carried out using "participant-observation" methodology and focusing on plant therapy against hepatitis including associated remedies. 45 parts of plant were extracted with methanol and tested in vitro for anti-HCV activity in 96-well plate, using HCV cell culture system with immunofluorescent detection assisted by automated confocal microscopy. Toxicity of plant extracts was also evaluated in microplates on hepatic cells by immunofluorescent detection, for the Huh-7 nuclei viability, and by UV-absorbance measurement of MTT formazan for cytotoxicity in HepG2 cells. RESULTS: In vitro assay revealed interesting activity of 18 extracts (50% infection inhibition at 25 µg/mL) with low cytotoxicity for 15 of them. Result analysis showed that at least 30% of HCV virus were inhibited at 25 µg/mL for 60% of the plant extracts. Moreover, the ethnomedical survey showed that remedies used with low and accurate dosing as targeted therapy against hepatitis are usually more active than species indicated with more flexible dosing to alleviate symptoms of hepatic diseases. CONCLUSION: Together with bibliographic data analysis, this study supported the traditional medicinal uses of many plants and contributed to a better understanding of the local medical system. It also permitted to refine the therapeutic plant indications regarding patients' liver injuries and vulnerability. Only 2 of the 15 most active plant species have already been studied for antiviral activity against hepatitis suggesting new avenues to be followed for the 13 other species.


Subject(s)
Antiviral Agents/pharmacology , Ethnopharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Phytotherapy , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Antiviral Agents/isolation & purification , Hep G2 Cells , Hepatitis C/virology , Humans , Peru , Plant Extracts/isolation & purification , Rainforest
2.
J Ethnopharmacol ; 249: 112411, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31751651

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The plant species reported here are used in contemporary phytotherapies by native and neo-urban societies from the Iquitenian surroundings (district of Loreto, Peruvian Amazon) for ailments related to microbial infections. Inhabitants of various ethnic origins were interviewed and 81 selected extracts were evaluated for their antimicrobial properties against a panel of 36 sensitive and multi-resistant bacteria or yeast. Medicinal plant researches in the Peruvian Amazon are now significant, but none of them has focused on an exhaustive listing of identified species tested on so many microbes with standardized experiments (to obtain MIC value). AIM OF THE STUDY: The aim of the study was to inventory the plants used against infections in the Loreto, an Amazonian region of Peru. It led to the new identification of secondary metabolites in two plant species. MATERIALS AND METHODS: Ethnographic survey was carried out using "participant-observation" methodology and focus on bioprospecting of antimicrobial remedies. Selected plant extracts and antimicrobial drugs were tested in vitro with agar dilution method on 35 bacteria strains and 1 yeast to evaluate their Minimal Inhibitory Concentration (MIC). Microdilution methods using 96-well microtiter plates were used for the determination of MIC from isolated compounds, and cytotoxicity in HepG2 cells from some selected extracts were also evaluated. Activity-guided isolation and identification of compounds were performed by various chromatographic methods and structural elucidations were established using HRMS and NMR spectroscopy. RESULTS: This study outlined antimicrobial activities of 59 plant species from 33 families (72 single plant extracts and 2 fermented preparations), 7 mixtures, and one insect nest extract against 36 microorganisms. Of the 59 species analysed, 12 plants showed relevant antibacterial activity with MIC ≤0.15 mg/mL for one or several of the 36 micro-organisms (Aspidosperma excelsum, Brosimum acutifolium, Copaifera paupera, Erythrina amazonica, Hura crepitans, Myrciaria dubia, Ocotea aciphylla, Persea americana, Spondias mombin, Swartzia polyphylla, Virola pavonis, Vismia macrophylla). Examination by bioautography of E. amazonica, M. dubia and O. aciphylla extracts allowed the phytochemical characterization of antimicrobial fractions and compounds. CONCLUSION: This study suggested an a posteriori correlation of the plant extract antimicrobial activity with the chemosensory cues of the drugs and attested that those chemosensory cues may be correlated with the presence of antimicrobial compounds (alkaloids, tannins, saponosids, essential oil, oleoresin …). It also led to the first isolation and identification of three secondary metabolites from E. amazonica and M. dubia.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Phytotherapy/methods , Plant Extracts/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Bacteria/drug effects , Bacterial Infections/microbiology , Ethnobotany , Ethnopharmacology , Humans , Microbial Sensitivity Tests , Peru , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry
3.
Molecules ; 24(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875854

ABSTRACT

New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.


Subject(s)
Anti-Infective Agents/chemistry , Biological Products/chemistry , Humulus/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Biofilms/drug effects , Biological Products/pharmacology , Humans , Leishmania mexicana/drug effects , Leishmania mexicana/pathogenicity , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Parasitic Diseases/drug therapy , Parasitic Diseases/parasitology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/pathogenicity
4.
Phytother Res ; 27(11): 1640-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23280633

ABSTRACT

Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Asteraceae/chemistry , Bursera/chemistry , Candida/drug effects , Cedrela/chemistry , Cell Line , Fabaceae/chemistry , Guadeloupe , Humans , Malassezia/drug effects , Microbial Sensitivity Tests , Pneumocystis carinii/drug effects
5.
J Ethnopharmacol ; 133(2): 917-21, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21040768

ABSTRACT

AIM OF THE STUDY: In order to evaluate the antimalarial potential of traditional remedies used in Peru, Indigenous and Mestizo populations from the river Nanay in Loreto were interviewed about traditional medication for the treatment of malaria. MATERIALS AND METHODS: The survey took place on six villages and led to the collection of 59 plants. 35 hydro-alcoholic extractions were performed on the 21 most cited plants. The extracts were then tested for antiplasmodial activity in vitro on Plasmodium falciparum chloroquine resistant strain (FCR-3), and ferriprotoporphyrin inhibition test was also performed in order to assume pharmacological properties. RESULTS: Extracts from 9 plants on twenty-one tested (Abuta rufescens, Ayapana lanceolata, Capsiandra angustifolia, Citrus limon, Citrus paradise, Minquartia guianensis, Potalia resinífera, Scoparia dulcis, and Physalis angulata) displayed an interesting antiplasmodial activity (IC(50)<10 µg/ml) and 16 remedies were active on the ferriprotoporphyrin inhibition test. CONCLUSIONS: The results give scientific validation to the traditional medical knowledge of the Amerindian and Mestizo populations from Loreto and exhibit a source of potentially active plants.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Phytotherapy , Plants, Medicinal , Ethnicity , Ethnopharmacology , Hemin/antagonists & inhibitors , Humans , Medicine, Traditional , Parasitic Sensitivity Tests , Peru , Plasmodium falciparum/drug effects
6.
J Nat Prod ; 73(7): 1313-7, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20590148

ABSTRACT

Three compounds were isolated from Acnistus arborescens, a tree commonly used in South and Central America in traditional medicine against several infectious diseases, some of which are caused by fungi. Bioassay-guided fractionation of a MeOH extract of leaves, based on its anti-Pneumocystis carinii activity, led to the isolation of compounds 1-3. Mono- and bidimensional NMR analyses enabled identification of two new withanolides, (20R,22R)-5beta,6beta-epoxy-4beta,12beta,20-trihydroxy-1-oxowith-2-en-24-enolide (1) and (20R,22R)-16beta-acetoxy-3beta,4beta;5beta,6beta-diepoxy-12beta,20-dihydroxy-1-oxowith-24-enolide (2), and withanolide D (3). Antifungal activity on 13 fungi responsible for human infections (five dermatophytes, one nondermatophyte mold, six yeasts, and Pneumocystis carinii) was examined. Cytotoxicity of these compounds was also evaluated in vitro.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Plants, Medicinal/chemistry , Withanolides/isolation & purification , Withanolides/pharmacology , Antifungal Agents/chemistry , Benzamides , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Guadeloupe , Humans , Imatinib Mesylate , Microbial Sensitivity Tests , Molecular Structure , Piperazines/pharmacology , Plant Leaves/chemistry , Pneumocystis carinii/drug effects , Pyrimidines/pharmacology , Solanaceae/chemistry , Stereoisomerism , Withanolides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL