Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072859

ABSTRACT

Two studies were conducted to evaluate the effect of encapsulated methionine on live performance, carcass characteristics, and skeletal muscle development in feedlot steers. In Experiment 1, 128 crossbred steers (body weight [BW] = 341 ± 36.7 kg) were used in a randomized complete block design and supplemented with 0, 4, 8, or 12 g/(head day [d]) of ruminally protected methionine (0MET, 4MET, 8MET, and 12MET, respectively) for 111 d or 139 d. In Exp. 2, 20 steers (BW = 457 ± 58 kg) were stratified by BW and randomly assigned to either the 0MET or 8MET treatment; longissimus muscle (LM) biopsies were collected on d 0, 14, 28, 42, and 56, and analyzed for mRNA and protein expression. Additionally, immunohistochemical analysis was performed to measure fiber type area and distribution as well as the density of muscle nuclei and satellite cells (Myf5, Pax7, and Myf5/Pax7). In Experiment 1, no significant differences were observed for live performance (p ≥ 0.09). There was, however, a linear relationship between LM area and methionine supplementation (p = 0.04), with a 9% increase in the area when steers were supplemented with 12MET compared to 0MET. In Exp. 2, There were no treatment × day interactions (p ≥ 0.10) for expression of mRNA or protein abundance. Although mRNA expression and protein abundance of all genes were influenced by day (p ≤ 0.04), methionine supplementation did not have a significant effect (p ≥ 0.08). There was a significant treatment × day interaction for distribution of MHC-I fibers (p = 0.03), where 8MET supplemented cattle had a greater proportion of MHC-I fibers after 56 d of supplementation than did 0MET steers. Cross-sectional area was increased over time regardless of fiber type (p < 0.01) but was unaffected by treatment (p ≥ 0.36). While nuclei density was not impacted by treatment (p = 0.55), the density of myonuclei increased nearly 55% in 8MET supplemented cattle (p = 0.05). The density of Myf5 positive satellite cells tended to decrease with methionine supplementation (p = 0.10), while the density of Pax7 expressing cells tended to increase (p = 0.09). These results indicate that encapsulated methionine supplementation may influence markers of skeletal muscle growth, and potential improvements in the LM area may exist.

2.
Transl Anim Sci ; 4(3): txaa146, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32905313

ABSTRACT

The objective of this study was to evaluate the effects of increasing concentrations of Cr propionate (CrP) on feedlot performance, blood parameters, carcass characteristics, and skeletal muscle fiber properties in feedlot steers. Crossbred steers (n = 32; 367 ± 2.5 kg; 16 pens; 2 hd/pen) were blocked by body weight (BW), and treatment was randomly assigned to pen: (1) 0 mg added Cr/kg diet dry matter (DM) (control), (2) 0.15 mg added Cr/kg diet DM (CrP; KemTRACE Chromium 0.04%, Kemin Industries, Des Moines, IA), (3) 0.30 mg added Cr/kg diet DM, and (4) 0.45 mg added Cr/kg diet DM. Steers were fed ad libitum, and the treatment was top-dressed at the time of feeding. Body weights, blood samples, and longissimus biopsies were collected before feeding on days 0, 28, 56, 91, 119, and 147. Blood sera were harvested for analysis of glucose, insulin, sera urea nitrogen, and non-esterified fatty acid concentrations. Longissimus biopsies were collected for gene expression, protein expression, and immunohistochemical (IHC) analysis. Pen was the experimental unit for live and carcass data, and steer was the experimental unit with day as a repeated measure for sera and IHC analyses. For the entire duration of the trial, a linear increase in average daily gain (ADG) (P = 0.01) and improvement in G:F was observed (P = 0.01) with no change in DMI (P = 0.11) with increasing CrP. A linear increase in hot carcass weight (HCW) (P ≤ 0.01) with no other changes in carcass composition were noted (P ≥ 0.38) as the level of dietary CrP increased. There was no effect of treatment on any sera parameters measured (P ≥ 0.10). No difference was detected for gene or protein expression of glucose transporter type 4 (GLUT4) due to CrP supplementation (P ≥ 0.10). For skeletal muscle fiber distribution and cross-sectional area, there was no effect of treatment (P ≥ 0.10). Density of total GLUT4 did not change due to CrP (P ≥ 0.10). Internalization of GLUT4 was increased in the 0.30 and 0.45 mg/kg treatments (P < 0.01). For total nuclei density and myonuclei density, there were treatment × day interaction tendencies (P ≤ 0.08). Supplementation of CrP did not alter density of satellite cells (P ≥ 0.10). The number of transporters located in the sarcolemma of skeletal muscle fibers did decrease, implying fewer proteins were needed to transport extracellular glucose into the muscle fiber. Therefore, CrP may augment cellular function and growth via increased efficiency of GLUT4 function. These results indicated CrP increases BW, ADG, and HCW, without changes in circulating sera parameters or total GLUT4 expression.

3.
J Anim Sci ; 98(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32619223

ABSTRACT

A randomized complete block design experiment with 32 yearling crossbred steers (average body weight [BW] = 442 ± 17.0 kg) fed a steam-flaked corn-based diet was used to evaluate the effects of dietary Zn (KemTRACE Zn propionate 27; Kemin Industries, Inc., Des Moines, IA) supplementation on live growth performance, skeletal muscle fiber, and beta-adrenergic receptor (ß-AR) characteristics during the finishing phase. Steers were blocked by BW (n = 4 blocks; 8 steers/block), assigned to pens (n = 4 steers/pen), and randomly assigned to the following treatments: control (CON; 0.0 g/[head (hd) · d] of additional Zn) or additional dietary Zn (ZnP; 1.0 g/[hd · d] additional Zn). The basal diet contained Zn (60 ppm dry matter basis) from ZnSO4; additional Zn was top-dressed at feeding. Ractopamine hydrochloride (RH; Optaflexx: Elanco Animal Health, Greenfield, IN) was included at 300 mg/(hd · d) for the final 28 d of the 111-d feeding period. Longissimus muscle biopsy samples, BW, and blood were obtained on days 0, 42, 79, and 107. Final BW was collected prior to shipping on day 111. Biopsy samples were used for immunohistochemical (IHC), mRNA, and protein analysis. Serum urea nitrogen (SUN) and nonesterified fatty acid (NEFA) concentrations were measured. Steers fed ZnP had a greater average daily gain (P = 0.02) and gain to feed ratio (G:F; P = 0.03) during the RH feeding period compared with CON. There were no differences (P > 0.05) in other growth performance variables, carcass traits, mRNA abundance, or relative protein concentration for fiber type and ß-AR. Fiber types I and IIA had no differences in the cross-sectional area; however, the IIX area was greater for CON (P < 0.04) compared with ZnP and increased (P < 0.02) over time. There were no differences between treatments for the ß1-AR density (P > 0.05) in skeletal muscle tissue throughout the study. A treatment × day interaction was observed in ß2-AR density (P = 0.02) and ß3-AR density (P = 0.02) during the RH feeding period, where the abundance of the receptors increased with ZnP but did not change in CON. Compared with CON, ZnP had greater (P < 0.01) mean NEFA concentrations. Mean SUN concentrations did increase by day (P < 0.01). Additional dietary Zn, supplied as Zn propionate, upregulates ß2-AR and ß3-AR and improves growth performance in feedlot steers during the RH feeding period, likely through a shift of resource utilization from lipogenesis to muscle maintenance and hypertrophy.


Subject(s)
Cattle , Dietary Supplements , Muscle Fibers, Skeletal/drug effects , Propionates/pharmacology , Animal Feed/analysis , Animals , Blood Urea Nitrogen , Body Composition/drug effects , Body Weight/drug effects , Cattle/growth & development , Cattle/metabolism , Diet/veterinary , Dietary Fiber/metabolism , Male , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phenethylamines/administration & dosage , Phenethylamines/pharmacology , Propionates/administration & dosage
4.
J Anim Sci ; 98(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32211767

ABSTRACT

Forty-eight Quarter Horse geldings (3 to 8 yr of age) were used to determine the effects of dietary chromium (Cr), in the form of Cr propionate (Cr Prop) on insulin sensitivity. Horses were blocked by age, body condition score, and glucose response to concentrate feeding on day 0 and randomly assigned to treatments. Treatments consisted of 0, 2, 4, or 8 mg Cr/d from Cr Prop. Horses were fed daily a concentrate mix at a rate of 0.2 kg/100 kg body weight (BW) and grass hay at 1.75 to 2.0 kg/100 kg BW. All horses were fed the control diet for 7 d prior to the initiation of the study. After an overnight fast, blood samples from the jugular vein were obtained at 0, 2, and 4 h after concentrate feeding on days 0 and 28 for the determination of glucose, nonesterified fatty acids, and insulin. A glucose tolerance test (GTT) was conducted on day 42. Glucose was infused via jugular vein catheters, and blood samples were collected at various times relative to dosing for glucose and insulin determination. Plasma glucose on day 28 was affected (P < 0.05) by treatment, time, and treatment × time. Horses fed 4 mg Cr/d had lesser (P < 0.05) plasma glucose concentrations than those in the other treatments at 0 h. At 2 h post-feeding glucose concentrations were greater (P < 0.05) in horses fed 0 or 8 mg Cr/d than in those given 4 mg Cr. Horses fed 2 mg Cr/d had lesser (P < 0.05) plasma glucose at 4 h post feeding compared with those fed 0 or 8 mg Cr. Plasma glucose did not differ among horses receiving 2 or 4 mg Cr/d at 2 or 4 h. Serum insulin was affected (P < 0.05) by treatment, time, and treatment × time. Insulin concentrations were greater (P < 0.05) in horses fed 0 or 2 mg Cr/d than in those given 4 or 8 mg Cr at 0 h. At 4 h post-feeding insulin concentrations were greater (P < 0.05) in horses given 0 or 8 mg Cr than in those fed 2 or 4 mg Cr/d. Plasma glucose was affected (P < 0.05) by treatment and time, but not by treatment × time following the GTT. Mean plasma glucose (across sampling times) concentrations were greater (P < 0.05) in controls than in horses fed 2 or 4 mg Cr/d. Glucose concentrations following the GTT did not differ among controls and horses given 8 mg Cr/d. Following glucose infusion, serum insulin concentrations were greater (P < 0.05) in horses fed 2 or 4 mg Cr and tended to be greater in those fed 8 mg Cr/d compared with controls. The results of this study indicate that 2 or 4 mg Cr/d from Cr Prop increased insulin sensitivity in adult horses following oral carbohydrate consumption.


Subject(s)
Carbohydrates/administration & dosage , Horses/physiology , Insulin Resistance , Propionates/pharmacology , Administration, Intravenous/veterinary , Administration, Oral , Animals , Blood Glucose/drug effects , Body Weight , Dietary Supplements , Fatty Acids, Nonesterified/blood , Glucose/metabolism , Glucose Tolerance Test/veterinary , Insulin/blood , Male , Propionates/administration & dosage
5.
Front Vet Sci ; 2: 26, 2015.
Article in English | MEDLINE | ID: mdl-26664955

ABSTRACT

In vitro experiments were performed to determine the effects of increasing concentrations of chromium propionate (CrPro) on mRNA and protein abundance of different enzymes and receptors. Intramuscular (IM) and subcutaneous (SC) preadipocytes and bovine satellite cells were isolated from the longissimus muscle to determine the effect of treatment on glucose transporter type 4 (GLUT4) and peroxisome proliferator-activated receptor γ mRNA and GLUT4 protein abundance. Preadipocyte cultures were treated with differentiation media plus either sodium propionate or different concentrations of CrPro for 96, 120, and 144 h before harvest. This study indicated that adipogenesis of the bovine IM adipocytes were more sensitive to the treatment of CrPro as compared to SC adipocytes. Enhancement of adenosine monophosphate-activated protein kinase and GLUT4 mRNA by CrPro treatment may enhance glucose uptake in IM adipocytes. CrPro decreased GLUT4 protein levels in muscle cell cultures suggesting that those cells have increased efficiency of glucose uptake due to exposure to increased levels of CrPro. In contrast, each of the two adipogenic lines had opposing responses to the CrPro. It appeared that CrPro had the most stimulative effect of GLUT4 response in the IM adipocytes as compared to SC adipocytes. These findings indicated opportunities to potentially augment marbling in beef cattle fed CrPro during the finishing phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...