Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 143(6): 1746-1765, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32516804

ABSTRACT

TOR1A/TorsinA mutations cause two incurable diseases: a recessive congenital syndrome that can be lethal, and a dominantly-inherited childhood-onset dystonia (DYT-TOR1A). TorsinA has been linked to phosphatidic acid lipid metabolism in Drosophila melanogaster. Here we evaluate the role of phosphatidic acid phosphatase (PAP) enzymes in TOR1A diseases using induced pluripotent stem cell-derived neurons from patients, and mouse models of recessive Tor1a disease. We find that Lipin PAP enzyme activity is abnormally elevated in human DYT-TOR1A dystonia patient cells and in the brains of four different Tor1a mouse models. Its severity also correlated with the dosage of Tor1a/TOR1A mutation. We assessed the role of excess Lipin activity in the neurological dysfunction of Tor1a disease mouse models by interbreeding these with Lpin1 knock-out mice. Genetic reduction of Lpin1 improved the survival of recessive Tor1a disease-model mice, alongside suppressing neurodegeneration, motor dysfunction, and nuclear membrane pathology. These data establish that TOR1A disease mutations cause abnormal phosphatidic acid metabolism, and suggest that approaches that suppress Lipin PAP enzyme activity could be therapeutically useful for TOR1A diseases.


Subject(s)
Molecular Chaperones/metabolism , Phosphatidate Phosphatase/metabolism , Animals , Brain/pathology , Disease Models, Animal , Dystonia/genetics , Dystonia/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics , Mutation , Neurons/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/physiology
2.
Hum Mol Genet ; 27(12): 2154-2170, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29868845

ABSTRACT

Heterozygosity for the TOR1A-Δgag mutation causes semi-penetrant childhood-onset dystonia (OMIM #128100). More recently, homozygous TOR1A mutations were shown to cause severe neurological dysfunction in infants. However, there is little known about the recessive cases, including whether existing reports define the full spectrum of recessive TOR1A disease. Here we describe abnormal brain morphogenesis in ∼30% of Tor1a-/- mouse embryos while, in contrast, this is not found in Tor1aΔgag/Δgag mice. The abnormal Tor1a-/- brains contain excess neural tissue, as well as proliferative zone cytoarchitectural defects related to radial glial cell polarity and cytoskeletal organization. In cultured cells torsinA effects the linker of nucleoskeleton and cytoskeleton (LINC) complex that couples the nucleus and cytoskeleton. Here we identify that torsinA loss elevates LINC complex levels in the proliferative zone, and that genetic reduction of LINC complexes prevents abnormal brain morphogenesis in Tor1a-/- embryos. These data show that Tor1a affects radial glial cells via a LINC complex mediated mechanism. They also predict human TOR1A disease will include incompletely penetrant defects in embryonic brain morphogenesis in cases where mutations ablate TOR1A function.


Subject(s)
Dystonia/genetics , Molecular Chaperones/genetics , Morphogenesis/genetics , Neurogenesis/genetics , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Disease Models, Animal , Dystonia/physiopathology , Heterozygote , Homozygote , Humans , Mice , Mice, Knockout , Neurons , Nuclear Matrix/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...