Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 80(1-2): 312-24, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24411518

ABSTRACT

Bottom sediments represent a crucial component of the marine environment, since they constitute a habitat, a trophic resource, and a spawning place for various organisms. Unfortunately, the sediments of urban coastal areas are deeply impacted by anthropogenic activities that degrade their quality. In the Drapetsona-Keratsini metropolitan coastal zone of Athens, current industrial and shipping activities together with the effluents from a sewage outfall, which was in operation in the past, have resulted in one of the most contaminated sedimentary environments, in terms of organic compound loads, in Mediterranean. Exceptionally high concentrations of aliphatic hydrocarbons (up to 4457 µg g⁻¹), carcinogenic PAHs (up to 7284 ng g⁻¹), and organochlorines (up to 544 ng g⁻¹ for PCBs; up to 208 ng g⁻¹ for DDTs) constitute a major threat to the marine life of the associated Saronikos Gulf.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Cities , Ecosystem , Greece , Hydrocarbons, Chlorinated/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
2.
Environ Monit Assess ; 185(12): 10049-72, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23813126

ABSTRACT

The selection of the best site for the placement of dredged sedimentary material (∼7,000 m(3)) from the Aliveri coastal area in the adjacent South Euboean Gulf (Greece) was accomplished through a screening procedure. The initial stage comprised the determination of physical, chemical, and biological characteristics of the dredged sediment before the commencement of any dredging operation. Grain size measurements, geochemical analyses together with the use of pollution/toxicity indices and empirical sediment quality guidelines, and the conduct of an acute toxicity test showed that the dredged material consisted of "unpolluted to slightly polluted" silty sands and sandy silts. However, the local authorities planned to place this sediment in the neighboring open sea area, i.e., the South Euboean Gulf, due to the absence of any beneficial use or alternative dumping option (i.e., dumping on public lands). Therefore, the next stage of the screening procedure, based on criteria such as the national legislation, seabed and seawater column characteristics, influence of the water mass circulation pattern on the post-placement migration of dredged sediment, impact on living resources and human activities (i.e., aquaculture and fishing), effect on significant marine sites (i.e., sites of scientific, ecological, and historical importance, navigation routes, military zones), and seafloor engineering uses, led to the evaluation of the suitability of the South Euboean Gulf as a potential dumping area. Then, the identification of the appropriate dredged material placement sites in the South Euboean Gulf was based on a cluster analysis, which tested the physicochemical resemblance of the dredged material and the surface sediments of 19 potential placement locations in the gulf. After the statistical process, only four sites situated near the north shoreline of the South Euboean Gulf were qualified as the best dredged material placement locations.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Refuse Disposal/methods , Ships , Water Pollutants/analysis , Greece
SELECTION OF CITATIONS
SEARCH DETAIL
...