Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2013: 901239, 2013.
Article in English | MEDLINE | ID: mdl-23738044

ABSTRACT

Nrf2 protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role of Nrf2 on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption of Nrf2 would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures. Nrf2(-/-) and Nrf2(+/+) mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P < 0.001) and HF HRV (P < 0.001) in Nrf2(-/-) mice compared to Nrf2(+/+) mice. Nrf2(-/-) mice tolerated hyperoxia significantly less than Nrf2(+/+) mice (~22 hrs; P < 0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater in Nrf2(-/-) compared to Nrf2(+/+) mice (P < 0.01). Results demonstrate that Nrf2 deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


Subject(s)
Environment , Heart/physiopathology , NF-E2-Related Factor 2/metabolism , Stress, Physiological , Analysis of Variance , Animals , Heart/drug effects , Heart Rate/drug effects , Hyperoxia/physiopathology , Male , Mice , Mice, Inbred ICR , NF-E2-Related Factor 2/deficiency , Particle Size , Particulate Matter/toxicity , Stress, Physiological/drug effects , Time Factors
2.
Am J Respir Cell Mol Biol ; 46(4): 470-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22052878

ABSTRACT

Exposure of mice to hyperoxia produces pulmonary toxicity similar to acute lung injury/acute respiratory distress syndrome, but little is known about the interactions within the cardiopulmonary system. This study was designed to characterize the cardiopulmonary response to hyperoxia, and to identify candidate susceptibility genes in mice. Electrocardiogram and ventilatory data were recorded continuously from 4 inbred and 29 recombinant inbred strains during 96 hours of hyperoxia (100% oxygen). Genome-wide linkage analysis was performed in 27 recombinant inbred strains against response time indices (TIs) calculated from each cardiac phenotype. Reductions in minute ventilation, heart rate (HR), low-frequency (LF) HR variability (HRV), high-frequency HRV, and total power HRV were found in all mice during hyperoxia exposure, but the lag time before these changes began was strain dependent. Significant (chromosome 9) or suggestive (chromosomes 3 and 5) quantitative trait loci were identified for the HRTI and LFTI. Functional polymorphisms in several candidate susceptibility genes were identified within the quantitative trait loci and were associated with hyperoxia susceptibility. This is the first study to report highly significant interstrain variation in hyperoxia-induced changes in minute ventilation, HR, and HRV, and to identify polymorphisms in candidate susceptibility genes that associate with cardiac responses. Results indicate that changes in HR and LF HRV could be important predictors of subsequent adverse outcome during hyperoxia exposure, specifically the pathogenesis of acute lung injury. Understanding the genetic mechanisms of these responses may have significant diagnostic clinical value.


Subject(s)
Acute Lung Injury/etiology , Acute Lung Injury/genetics , Heart Rate/genetics , Hyperoxia/complications , Animals , Genetic Linkage , Hyperoxia/physiopathology , Lung/pathology , Mice , Mice, Inbred Strains , Phenotype , Proteins/metabolism , Quantitative Trait Loci
3.
Am J Physiol Heart Circ Physiol ; 295(1): H59-68, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18456734

ABSTRACT

Recent studies have suggested a genetic component to heart rate (HR) and HR variability (HRV). However, a systematic examination of the genetic contribution to the variation in HR and HRV has not been performed. This study investigated the genetic contribution to HR and HRV using a wide range of inbred and recombinant inbred (RI) mouse strains. Electrocardiogram data were recorded from 30 strains of inbred mice and 29 RI strains. Significant differences in mean HR and total power (TP) HRV were identified between inbred strains and RI strains. Multiple significant differences within the strain sets in mean low-frequency (LF) and high-frequency (HF) power were also found. No statistically significant concordance was found between strain distribution patterns for HR and HRV phenotypes. Genomewide interval mapping identified a significant quantitative trait locus (QTL) for HR [LOD (likelihood of the odds) score = 3.763] on chromosome 6 [peak at 53.69 megabases (Mb); designated HR 1 (Hr1)]. Suggestive QTLs for TP were found on chromosomes 2, 4, 5, 6, and 14. A suggestive QTL for LF was found on chromosome 16; for HF, we found one significant QTL on chromosome 5 (LOD score = 3.107) [peak at 53.56 Mb; designated HRV-high-frequency 1 (Hrvhf1)] and three suggestive QTLs on chromosomes 2, 11 and 15. In conclusion, the results demonstrate a strong genetic component in the regulation of resting HR and HRV evidenced by the significant differences between strains. A lack of correlation between HR and HRV phenotypes in some inbred strains suggests that different sets of genes control the phenotypes. Furthermore, QTLs were found that will provide important insight to the genetic regulation of HR and HRV at rest.


Subject(s)
Heart Rate/genetics , Animals , Chromosome Mapping , Electrocardiography, Ambulatory , Genotype , Lod Score , Male , Mice , Mice, Inbred Strains , Phenotype , Pulmonary Ventilation/genetics , Quantitative Trait Loci , Respiratory Mechanics/genetics , Species Specificity , Telemetry , Tidal Volume/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...