Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 5(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-32990680

ABSTRACT

Patient-derived organoid models are proving to be a powerful platform for both basic and translational studies. Here we conduct a methodical analysis of pancreatic ductal adenocarcinoma (PDAC) tumor organoid drug response in paired patient-derived xenograft (PDX) and PDX-derived organoid (PXO) models grown under WNT-free culture conditions. We report a specific relationship between area under the curve value of organoid drug dose response and in vivo tumor growth, irrespective of the drug treatment. In addition, we analyzed the glycome of PDX and PXO models and demonstrate that PXOs recapitulate the in vivo glycan landscape. In addition, we identify a core set of 57 N-glycans detected in all 10 models that represent 50%-94% of the relative abundance of all N-glycans detected in each of the models. Last, we developed a secreted biomarker discovery pipeline using media supernatant of organoid cultures and identified potentially new extracellular vesicle (EV) protein markers. We validated our findings using plasma samples from patients with PDAC, benign gastrointestinal diseases, and chronic pancreatitis and discovered that 4 EV proteins are potential circulating biomarkers for PDAC. Thus, we demonstrate the utility of organoid cultures to not only model in vivo drug responses but also serve as a powerful platform for discovering clinically actionable serologic biomarkers.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Extracellular Vesicles/metabolism , Organoids/pathology , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/drug therapy , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , Organoids/drug effects , Organoids/metabolism , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/drug therapy , Polysaccharides/metabolism , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
2.
Int J Mol Sci ; 20(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640124

ABSTRACT

Zika virus (ZIKV) is a global public health issue due to its association with severe developmental disorders in infants and neurological disorders in adults. ZIKV uses glycosylation of its envelope (E) protein to interact with host cell receptors to facilitate entry; these interactions could also be important for designing therapeutics and vaccines. Due to a lack of proper information about Asn-linked (N-glycans) on ZIKV E, we analyzed ZIKV E of various strains derived from different cells. We found ZIKV E proteins being extensively modified with oligomannose, hybrid and complex N-glycans of a highly heterogeneous nature. Host cell surface glycans correlated strongly with the glycomic features of ZIKV E. Mechanistically, we observed that ZIKV N-glycans might play a role in viral pathogenesis, as mannose-specific C-type lectins DC-SIGN and L-SIGN mediate host cell entry of ZIKV. Our findings represent the first detailed mapping of N-glycans on ZIKV E of various strains and their functional significance.


Subject(s)
Viral Envelope Proteins/chemistry , Zika Virus Infection/virology , Zika Virus/physiology , Zika Virus/pathogenicity , Animals , Chlorocebus aethiops , Glycosylation , Host Microbial Interactions , Humans , Oligosaccharides/metabolism , Polysaccharides/metabolism , THP-1 Cells , Vero Cells , Virus Internalization , Zika Virus/metabolism
3.
Sci Rep ; 9(1): 8920, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222080

ABSTRACT

Despite advances in stem cell research, cell transplantation therapy for liver failure is impeded by a shortage of human primary hepatocytes (HPH), along with current differentiation protocol limitations. Several studies have examined the concept of co-culture of human induced pluripotent cells (hiPSCs) with various types of supporting non-parenchymal cells to attain a higher differentiation yield and to improve hepatocyte-like cell functions both in vitro and in vivo. Co-culturing hiPSCs with human endothelial cells (hECs) is a relatively new technique that requires more detailed studies. Using our 3D human embryoid bodies (hEBs) formation technology, we interlaced Human Adipose Microvascular Endothelial Cells (HAMEC) with hiPSCs, leading to a higher differentiation yield and notable improvements across a wide range of hepatic functions. We conducted a comprehensive gene and protein secretion analysis of our HLCs coagulation factors profile, showing promising results in comparison with HPH. Furthermore, a stage-specific glycomic analysis revealed that the differentiated hepatocyte-like clusters (HLCs) resemble the glycan features of a mature tissue rather than cells in culture. We tested our HLCs in animal models, where the presence of HAMEC in the clusters showed a consistently better performance compared to the hiPSCs only group in regard to persistent albumin secretion post-transplantation.


Subject(s)
Endothelial Cells/cytology , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Cell Differentiation , Cell Transplantation , Coculture Techniques , Humans , Liver Failure/therapy , Models, Animal
4.
Carbohydr Res ; 394: 32-8, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24967680

ABSTRACT

Cleavage of the thioether bond of S-D-ribosyl-L-homocysteine (SRH) by the enzyme S-ribosylhomocysteinase (LuxS) serves as the final biosynthetic step in the generation of the quorum sensing autoinducer AI-2 by bacteria. Herein, a revised chemical synthesis of SRH is presented at convenient scale and purity for in vitro studies of LuxS. Potassium bis(trimethylsilyl)amide (KHMDS) is identified as a judicious base for the formation of the thioether of the target compound from readily-accessible precursors: a thiol nucleophile derived from l-homocystine and a sulfonate-activated d-ribosyl electrophile. The exclusive use of acid-labile protecting groups allows for facile deprotection to the final product, producing the TFA salt of SRH in five synthetic steps and 26% overall yield. The chemically-synthesized material is isolated at high purity and demonstrated to serve as the LuxS substrate by an in vitro assay.


Subject(s)
Homocysteine/analogs & derivatives , Quorum Sensing , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbon-Sulfur Lyases/chemistry , Carbon-Sulfur Lyases/metabolism , Chemistry Techniques, Synthetic , Homocysteine/chemical synthesis
5.
Am J Health Syst Pharm ; 68(5): 420-3, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21330684

ABSTRACT

PURPOSE: The stability of alcohol-free oral suspensions of melatonin 1 mg/mL, extemporaneously prepared from two commercially available melatonin tablet products, was studied. METHODS: Four 1-mg/mL melatonin suspensions were prepared. Formulations A and B contained 20 crushed 3-mg tablets of melatonin combined with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a volume of 60 mL. Formulations C and D were prepared by crushing 20 combination tablets containing melatonin 3 mg and pyridoxine hydrochloride 10 mg and then combining the powder with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF to produce a 60-mL volume. The suspensions were prepared in triplicate and stored at room temperature in amber plastic prescription bottles. Immediately after preparation and on days 7, 15, 30, 60, and 90, the samples were assayed in duplicate by stability-indicating high-performance liquid chromatography (HPLC). The samples were also evaluated for any changes in color, odor, and taste. RESULTS: HPLC analysis demonstrated that at least 94% of the initial melatonin concentration in formulations A and B, and at least 98% of that in formulations C and D, remained throughout the 90-day study period. Detectable changes in color, odor, or taste occurred in all of the formulations. CONCLUSION: Extemporaneously prepared, alcohol-free, 1-mg/mL suspensions of melatonin and melatonin-pyridoxine hydrochloride in a 1:1 mixture of Ora-Plus and either Ora Sweet or Ora Sweet SF were stable for at least 90 days when stored in 2-oz amber plastic bottles at room temperature.


Subject(s)
Central Nervous System Depressants/administration & dosage , Melatonin/administration & dosage , Pyridoxine/administration & dosage , Vitamin B Complex/administration & dosage , Administration, Oral , Central Nervous System Depressants/chemistry , Chromatography, High Pressure Liquid , Color , Drug Combinations , Drug Compounding , Drug Stability , Drug Storage , Humans , Melatonin/chemistry , Odorants , Pharmaceutical Vehicles/chemistry , Pyridoxine/chemistry , Suspensions , Taste , Time Factors , Vitamin B Complex/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...