Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Insect Sci ; 53: 100951, 2022 10.
Article in English | MEDLINE | ID: mdl-35863739

ABSTRACT

Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.


Subject(s)
Life History Traits , Reproduction , Animals , Female , Insecta , Pheromones/pharmacology
2.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35227461

ABSTRACT

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Subject(s)
Cognitive Dysfunction , Intellectual Disability , Adaptor Proteins, Signal Transducing/genetics , Animals , Cognitive Dysfunction/genetics , Consanguinity , Drosophila , Drosophila melanogaster , Humans , Intellectual Disability/genetics , Mice , Mutation/genetics
3.
J Synchrotron Radiat ; 28(Pt 3): 790-803, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33949987

ABSTRACT

The widespread use and development of inertia friction welding is currently restricted by an incomplete understanding of the deformation mechanisms and microstructure evolution during the process. Understanding phase transformations and lattice strains during inertia friction welding is essential for the development of robust numerical models capable of determining optimized process parameters and reducing the requirement for costly experimental trials. A unique compact rig has been designed and used in-situ with a high-speed synchrotron X-ray diffraction instrument to investigate the microstructure evolution during inertia friction welding of a high-carbon steel (BS1407). At the contact interface, the transformation from ferrite to austenite was captured in great detail, allowing for analysis of the phase fractions during the process. Measurement of the thermal response of the weld reveals that the transformation to austenite occurs 230 °C below the equilibrium start temperature of 725 °C. It is concluded that the localization of large strains around the contact interface produced as the specimens deform assists this non-equilibrium phase transformation.

4.
Proc Biol Sci ; 287(1935): 20201424, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32933446

ABSTRACT

Social interactions are thought to be a critical driver in the evolution of cognitive ability. Cooperative interactions, such as pair bonding, rather than competitive interactions have been largely implicated in the evolution of increased cognition. This is despite competition traditionally being a very strong driver of trait evolution. Males of many species track changes in their social environment and alter their reproductive strategies in response to anticipated levels of competition. We predict this to be cognitively challenging. Using a Drosophila melanogaster model, we are able to distinguish between the effects of a competitive environment versus generic social contact by exposing flies to same-sex same-species competition versus different species partners, shown to present non-competitive contacts. Males increase olfactory learning/memory and visual memory after exposure to conspecific males only, a pattern echoed by increased expression of synaptic genes and an increased need for sleep. For females, largely not affected by mating competition, the opposite pattern was seen. The results indicate that specific social contacts dependent on sex, not simply generic social stimulation, may be an important evolutionary driver for cognitive ability in fruit flies.


Subject(s)
Cognition , Drosophila melanogaster/physiology , Animals , Female , Male , Memory , Phenotype , Reproduction , Sex Factors , Sleep , Social Behavior
5.
Behav Ecol Sociobiol ; 72(8): 124, 2018.
Article in English | MEDLINE | ID: mdl-30100665

ABSTRACT

Phenotypic plasticity can be a key determinant of fitness. The degree to which the expression of plasticity is adaptive relies upon the accuracy with which information about the state of the environment is integrated. This step might be particularly beneficial when environments, e.g. the social and sexual context, change rapidly. Fluctuating temporal dynamics could increase the difficulty of determining the appropriate level of expression of a plastic response. In this review, we suggest that new insights into plastic responses to the social and sexual environment (social and reproductive plasticity) may be gained by examining the role of complex cues (those comprising multiple, distinct sensory components). Such cues can enable individuals to more accurately monitor their environment in order to respond adaptively to it across the whole life course. We briefly review the hypotheses for the evolution of complex cues and then adapt these ideas to the context of social and sexual plasticity. We propose that the ability to perceive complex cues can facilitate plasticity, increase the associated fitness benefits and decrease the risk of costly 'mismatches' between phenotype and environment by (i) increasing the robustness of information gained from highly variable environments, (ii) fine-tuning responses by using multiple strands of information and (iii) reducing time lags in adaptive responses. We conclude by outlining areas for future research that will help to determine the interplay between complex cues and plasticity.

6.
Ecol Evol ; 7(22): 9247-9256, 2017 11.
Article in English | MEDLINE | ID: mdl-29187965

ABSTRACT

Complex sets of cues can be important in recognizing and responding to conspecific mating competitors and avoiding potentially costly heterospecific competitive interactions. Within Drosophila melanogaster, males can detect sensory inputs from conspecifics to assess the level of competition. They respond to rivals by significantly extending mating duration and gain significant fitness benefits from doing so. Here, we tested the idea that the multiple sensory cues used by D. melanogaster males to detect conspecifics also function to minimize "off-target" responses to heterospecific males that they might encounter (Drosophila simulans, Drosophila yakuba, Drosophila pseudoobscura, or Drosophila virilis). Focal D. melanogaster males exposed to D. simulans or D. pseudoobscura subsequently increased mating duration, but to a lesser extent than following exposure to conspecific rivals. The magnitude of rivals' responses expressed by D. melanogaster males did not align with genetic distance between species, and none of the sensory manipulations caused D. melanogaster to respond to males of all other species tested. However, when we removed or provided "false" sensory cues, D. melanogaster males became more likely to show increased mating duration responses to heterospecific males. We suggest that benefits of avoiding inaccurate assessment of the competitive environment may shape the evolution of recognition cues.

7.
Materials (Basel) ; 9(1)2016 Jan 06.
Article in English | MEDLINE | ID: mdl-28787827

ABSTRACT

The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...