Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EuroIntervention ; 13(14): 1670-1679, 2018 02 20.
Article in English | MEDLINE | ID: mdl-28846542

ABSTRACT

AIMS: Drug-eluting stents (DES) have evolved to using bioresorbable polymers as a method of drug delivery. The impact of bioresorbable polymer on long-term neointimal formation, inflammation, and healing has not been fully characterised. This study aimed to evaluate the biological effect of polymer resorption on vascular healing and inflammation. METHODS AND RESULTS: A comparative DES study was performed in the familial hypercholesterolaemic swine model of coronary stenosis. Permanent polymer DES (zotarolimus-eluting [ZES] or everolimus-eluting [EES]) were compared to bioresorbable polymer everolimus-eluting stents (BP-EES) and BMS. Post implantation in 29 swine, stents were explanted and analysed up to 180 days. Area stenosis was reduced in all DES compared to BMS at 30 days. At 180 days, BP-EES had significantly lower area stenosis than EES or ZES. Severe inflammatory activity persisted in permanent polymer DES at 180 days compared to BP-EES or BMS. Qualitative para-strut inflammation areas (graded as none to severe) were elevated but similar in all groups at 30 days, peaked at 90 days in DES compared to BMS (p<0.05) and, at 180 days, were similar between BMS and BP-EES but were significantly greater in DES. CONCLUSIONS: BP-EES resulted in a lower net long-term reduction in neointimal formation and inflammation compared to permanent polymer DES in an animal model. Further study of the long-term neointima formation deserves study in human clinical trials.


Subject(s)
Absorbable Implants , Coronary Stenosis/therapy , Drug-Eluting Stents , Inflammation/prevention & control , Neointima , Percutaneous Coronary Intervention/methods , Absorbable Implants/adverse effects , Animals , Disease Models, Animal , Drug-Eluting Stents/adverse effects , Everolimus/administration & dosage , Polymers , Sirolimus/administration & dosage , Sirolimus/analogs & derivatives , Swine , Wound Healing
2.
J Cardiovasc Transl Res ; 9(4): 360-7, 2016 08.
Article in English | MEDLINE | ID: mdl-27188879

ABSTRACT

The use of preclinical animal models is integral to the safety assessment, pathogenesis research, and testing of diagnostic technologies and therapeutic interventions. With inherent similarity to human anatomy and physiology, various porcine models have been the preferred preclinical model in some research areas such as medical devices, wound healing, and skin therapies. The porcine model has been the cornerstone for interventional cardiology for the evaluation and development of this catheter-based renal denervation (RDN) therapy. The porcine model provides similar vascular access and renal neurovascular anatomy to humans. In these preclinical studies, the downstream kidneys from treated arteries are assessed for possible histopathological changes in the vessel dependent territories. In assessing renal safety following RDN, it becomes critical to distinguish treatment-related changes from pre-existing background pathologies. The incidence of background pathological changes in porcine kidneys has not been previously established in normal clinically healthy. Samples from the cranial, middle, and caudal portion of 331 naïve kidneys from 181 swine were processed histologically to slides and evaluated microscopically. The most commonly encountered spontaneous changes were chronic pyelonephritis found in nearly half of the evaluated naïve kidneys (∼40 %; score 1 = 91 %, score 2 = 8.4 %, score 3 = 0.76 %) followed by chronic interstitial inflammation in 9.7 % of the kidneys (score 1 = 90.6 %, score 2 = 9.4 %). Interestingly, there were a few rare spontaneous vascular changes that could potentially affect data interpretation in interventional and toxicology studies: arteritis and arteriolar dissection. The presence of pelvic cysts was a common occurrence (6.3 %) in the kidney. The domestic swine is a widely used preclinical species in interventional research, namely in the emerging field of transcatheter renal denervation. This retrospective study presents the historical incidence of spontaneous lesions recorded in the kidneys from naive pigs enrolled in renal denervation studies. There were commonly encountered changes of little pathological consequence such as pyelonephritis or pelvic cysts and rare vascular changes such as arteritis and arteriolar dissection that were of greater potential impact on study data interpretation. These results offer a benchmark by which to gage the potential effect of a procedure or treatment on renal histopathology in swine and assist in data interpretation.


Subject(s)
Autonomic Denervation/methods , Catheter Ablation , Kidney Diseases/veterinary , Kidney/blood supply , Renal Artery/innervation , Swine Diseases/pathology , Aortic Dissection/pathology , Aortic Dissection/veterinary , Animals , Arteritis/pathology , Arteritis/veterinary , Autonomic Denervation/adverse effects , Biopsy , Catheter Ablation/adverse effects , Chronic Disease , Kidney/pathology , Kidney Diseases/pathology , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/veterinary , Models, Animal , Nephritis, Interstitial/pathology , Nephritis, Interstitial/veterinary , Pyelonephritis/pathology , Pyelonephritis/veterinary , Retrospective Studies , Risk Factors , Sus scrofa , Swine , Time Factors
3.
Hum Gene Ther ; 16(12): 1484-503, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16390279

ABSTRACT

Late infantile neuronal ceroid lipofuscinosis (LINCL), a pediatric autosomal recessive neurodegenerative lysosomal storage disorder, results from mutations in the CLN2 gene and consequent deficiency in tripeptidyl-peptidase I (TPP-I) and progressive destruction of neurons. We have previously demonstrated that CNS gene transfer of AAV2(CU)hCLN2 (an AAV2-based vector expressing the human CLN2 cDNA) in rats and nonhuman primates mediates long-term TPP-I expression in the CNS neurons [Sondhi, D., Peterson, D.A., Giannaris, E.L., Sanders, C.T., Mendez, B.S., De, B., Rostkowski, A., Blancard, B., Bjugstad, K., Sladek, J.R., Redmond, D.E., Leopold, P.L., Kaminsky, S.M., Hackett, N.R., and Crystal, R.G. (2005). Gene Ther. 12, 1618-1632]. The present study tests the hypothesis that direct CNS administration of a clinical-grade AAV2(CU)hCLN2 vector to the CNS of rats and nonhuman primates at doses scalable to humans has a long-term safety profile acceptable for initiating clinical trials. Fischer 344 rats were injected bilaterally via the striatum with 2 x 10(10) particle units (PU) of AAV2(CU)hCLN2, using saline as a control. At 13, 26, and 52 weeks, vector and phosphate-buffered salineinjected rats were killed (n = 6 per time point), and blood, brain, and distant organs were assessed. There were no biologically significant differences between control and vector groups for complete blood count, serum chemistry, and neutralizing anti-AAV2 antibody levels. CNS administration of AAV2 CUhCLN2 did not result in any pathological changes in the brain that were attributable to the vector, although microscopic changes were observed along the track consistent with needle trauma. A total dose of 3.6 x 10(10) or 3.6 x 10(11) PU of AAV2(CU)hCLN2 was administered to the CNS of African Green monkeys at 12 locations, targeting the caudate nucleus, hippocampus, and overlying cortices. Monkeys (n = 3 at each dose) were killed 1, 13, 26, or 52 weeks after injection. Controls included sham-injected, saline-injected, and AAV2(CU)Null-injected (3.6 x 10(11) PU) monkeys. There were no biologically significant differences among vector-injected and control groups in any parameter of the general assessment, complete blood count, or serum chemistry assessed at multiple time points after vector administration. Importantly, no abnormal behavior was observed in any group in videotaped neurological assessment, where behaviors were quantified before administration and at multiple time points afterward. Histopathological examination of the CNS demonstrated that 1 week after administration, AAV2(CU)hCLN2 produced transient minor white matter edema with reactive glial cells in the corona radiata of the cerebrum along the injection track and in the surrounding white matter. This abnormality was not observed at 13, 26, or 52 weeks. Together with the long-term gene expression after gene transfer, these findings supported the initiation of clinical trials to assess the safety of AAV2(CU)hCLN2 administration to individuals with LINCL.


Subject(s)
Gene Transfer Techniques/adverse effects , Genetic Therapy , Genetic Vectors/administration & dosage , Neuronal Ceroid-Lipofuscinoses/therapy , Animals , Brain Edema/etiology , Central Nervous System , Chlorocebus aethiops , Dependovirus/genetics , Gene Expression , Genetic Therapy/adverse effects , Male , Neuronal Ceroid-Lipofuscinoses/genetics , Plasmids/genetics , Rats , Rats, Inbred F344 , Tripeptidyl-Peptidase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...