Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(6): e1011642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875296

ABSTRACT

Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin ß RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.


Subject(s)
Antiviral Agents , Influenza A virus , RNA-Dependent RNA Polymerase , Single-Domain Antibodies , Virus Replication , Single-Domain Antibodies/immunology , Humans , Antiviral Agents/pharmacology , Influenza A virus/immunology , Animals , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Influenza, Human/immunology , Influenza, Human/virology , HEK293 Cells , Dogs , Madin Darby Canine Kidney Cells
2.
Sci Rep ; 14(1): 6577, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503809

ABSTRACT

The type IX secretion system (T9SS) is a large multi-protein transenvelope complex distributed into the Bacteroidetes phylum and responsible for the secretion of proteins involved in pathogenesis, carbohydrate utilization or gliding motility. In Porphyromonas gingivalis, the two-component system PorY sensor and response regulator PorX participate to T9SS gene regulation. Here, we present the crystal structure of PorXFj, the Flavobacterium johnsoniae PorX homolog. As for PorX, the PorXFj structure is comprised of a CheY-like N-terminal domain and an alkaline phosphatase-like C-terminal domain separated by a three-helix bundle central domain. While not activated and monomeric in solution, PorXFj crystallized as a dimer identical to active PorX. The CheY-like domain of PorXFj is in an active-like conformation, and PorXFj possesses phosphodiesterase activity, in agreement with the observation that the active site of its phosphatase-like domain is highly conserved with PorX.


Subject(s)
Bacterial Proteins , Flavobacterium , Bacterial Proteins/metabolism , Flavobacterium/metabolism , Bacteroidetes/metabolism , Motor Activity , Bacterial Secretion Systems/genetics , Porphyromonas gingivalis/metabolism
3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675258

ABSTRACT

The type VI secretion system (T6SS) delivers enzymatic effectors into target cells to destroy them. Cells of the same strain protect themselves against effectors with immunity proteins that specifically inhibit effectors. Here, we report the identification and characterization of a Tle3 phospholipase effector and its cognate immunity protein Tli3-an outer membrane lipoprotein from adherent-invasive Escherichia coli (AIEC). Enzymatic assays demonstrate that purified Tle3AIEC has a phospholipase A1, and not A2, activity and that its toxicity is neutralized by the cognate immunity protein Tli3AIEC. Tli3AIEC binds Tle3 in a 1:1 stoichiometric ratio. Tle3AIEC, Tli3AIEC and the Tle3AIEC-Tli3AIEC complex were purified and subjected to crystallization. The Tle3AIEC-Tli3AIEC complex structure could not be solved by SeMet phasing, but only by molecular replacement when using an AlphaFold2 prediction model. Tle3AIEC exhibits an α/ß-hydrolase fold decorated by two protruding segments, including a N-terminus loop. Tli3AIEC displays a new fold of three stacked ß-sheets and a protruding loop that inserts in Tle3AIECcatalytic crevice. We showed, experimentally, that Tle3AIEC interacts with the VgrG AIEC cargo protein and AlphaFold2 prediction of the VgrGAIEC-Tle3AIEC complex reveals a strong interaction between the VgrGAIEC C-terminus adaptor and Tle3AIEC N-terminal loop.


Subject(s)
Escherichia coli Infections , Type VI Secretion Systems , Humans , Escherichia coli/metabolism , Type VI Secretion Systems/metabolism , Bacterial Proteins/metabolism , Bacterial Adhesion , Co-Repressor Proteins/metabolism
4.
PLoS Pathog ; 18(9): e1010799, 2022 09.
Article in English | MEDLINE | ID: mdl-36067253

ABSTRACT

The binding of the SARS-CoV-2 spike to angiotensin-converting enzyme 2 (ACE2) promotes virus entry into the cell. Targeting this interaction represents a promising strategy to generate antivirals. By screening a phage-display library of biosynthetic protein sequences build on a rigid alpha-helicoidal HEAT-like scaffold (named αReps), we selected candidates recognizing the spike receptor binding domain (RBD). Two of them (F9 and C2) bind the RBD with affinities in the nM range, displaying neutralisation activity in vitro and recognizing distinct sites, F9 overlapping the ACE2 binding motif. The F9-C2 fusion protein and a trivalent αRep form (C2-foldon) display 0.1 nM affinities and EC50 of 8-18 nM for neutralization of SARS-CoV-2. In hamsters, F9-C2 instillation in the nasal cavity before or during infections effectively reduced the replication of a SARS-CoV-2 strain harbouring the D614G mutation in the nasal epithelium. Furthermore, F9-C2 and/or C2-foldon effectively neutralized SARS-CoV-2 variants (including delta and omicron variants) with EC50 values ranging from 13 to 32 nM. With their high stability and their high potency against SARS-CoV-2 variants, αReps provide a promising tool for SARS-CoV-2 therapeutics to target the nasal cavity and mitigate virus dissemination in the proximal environment.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Recombinant Fusion Proteins , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Viruses ; 14(7)2022 07 14.
Article in English | MEDLINE | ID: mdl-35891516

ABSTRACT

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.


Subject(s)
Hepatitis E virus , Hepatitis E , Furylfuramide/metabolism , Hepatitis E virus/genetics , Humans , Polyproteins/genetics , Polyproteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
6.
Commun Med (Lond) ; 2: 56, 2022.
Article in English | MEDLINE | ID: mdl-35619829

ABSTRACT

Background: An ongoing need during the COVID-19 pandemic has been the requirement for accurate and efficient point-of-care testing platforms to distinguish infected from non-infected people, and to differentiate SARS-CoV-2 infections from other viruses. Electrochemical platforms can detect the virus via its envelope spike protein by recording changes in voltammetric signals between samples. However, this remains challenging due to the limited sensitivity of these sensing platforms. Methods: Here, we report on a nanobody-functionalized electrochemical platform for the rapid detection of whole SARS-CoV-2 viral particles in complex media such as saliva and nasopharyngeal swab samples. The sensor relies on the functionalization of gold electrode surface with highly-oriented Llama nanobodies specific to the spike protein receptor binding domain (RBD). The device provides results in 10 min of exposure to 200 µL of unprocessed samples with high specificity to SARS-CoV-2 viral particles in human saliva and nasopharyngeal swab samples. Results: The developed sensor could discriminate between different human coronavirus strains and other respiratory viruses, with 90% positive and 90% negative percentage agreement on 80 clinical samples, as compared to RT-qPCR. Conclusions: We believe this diagnostic concept, also validated for RBD mutants and successfully tested on Delta variant samples, to be a powerful tool to detect patients' infection status, easily extendable to other viruses and capable of overcoming sensing-related mutation effects.

7.
J Biol Chem ; 298(3): 101618, 2022 03.
Article in English | MEDLINE | ID: mdl-35065963

ABSTRACT

Porphyromonas gingivalis, the major human pathogen bacterium associated with periodontal diseases, secretes virulence factors through the Bacteroidetes-specific type IX secretion system (T9SS). Effector proteins of the T9SS are recognized by the complex via their conserved C-terminal domains (CTDs). Among the 18 proteins essential for T9SS function in P. gingivalis, PorN is a periplasmic protein that forms large ring-shaped structures in association with the PorK outer membrane lipoprotein. PorN also mediates contacts with the PorM subunit of the PorLM energetic module, and with the effector's CTD. However, no information is available on the PorN structure and on the implication of PorN domains for T9SS assembly and effector recognition. Here we present the crystal structure of PorN at 2.0-Å resolution, which represents a novel fold with no significant similarity to any known structure. In agreement with in silico analyses, we also found that the N- and C-terminal regions of PorN are intrinsically disordered. Our functional studies showed that the N-terminal disordered region is involved in PorN dimerization while the C-terminal disordered region is involved in the interaction with PorK. Finally, we determined that the folded PorN central domain is involved in the interaction with PorM, as well as with the effector's CTD. Altogether, these results lay the foundations for a more comprehensive model of T9SS architecture and effector transport.


Subject(s)
Bacterial Secretion Systems , Porphyromonas gingivalis , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Humans , Periplasm/metabolism , Porphyromonas gingivalis/metabolism , Structure-Activity Relationship , Virulence Factors/metabolism
8.
Anal Bioanal Chem ; 414(1): 103-113, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33616686

ABSTRACT

Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.


Subject(s)
Antigens, Viral/analysis , Biosensing Techniques/methods , COVID-19 Testing/methods , COVID-19/diagnosis , Point-of-Care Testing/trends , SARS-CoV-2/immunology , Antigens, Viral/immunology , COVID-19/virology , Electrochemical Techniques , Humans , Ligands , Point-of-Care Systems
9.
PLoS One ; 16(7): e0254232, 2021.
Article in English | MEDLINE | ID: mdl-34214145

ABSTRACT

The type VI secretion system (T6SS) is a widespread mechanism of protein delivery into target cells, present in more than a quarter of all sequenced Gram-negative bacteria. The T6SS constitutes an important virulence factor, as it is responsible for targeting effectors in both prokaryotic and eukaryotic cells. The T6SS comprises a tail structure tethered to the cell envelope via a trans-envelope complex. In most T6SS, the membrane complex is anchored to the cell wall by the TagL accessory protein. In this study, we report the first crystal structure of a peptidoglycan-binding domain of TagL. The fold is conserved with members of the OmpA/Pal/MotB family, and more importantly, the peptidoglycan binding site is conserved. This structure further exemplifies how proteins involved in anchoring to the cell wall for different cellular functions rely on an interaction network with peptidoglycan strictly conserved.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Protein Domains/physiology , Type VI Secretion Systems/metabolism , Gram-Negative Bacteria/metabolism , Virulence Factors/metabolism
10.
Sci Rep ; 11(1): 13172, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162975

ABSTRACT

Odorant-binding proteins (OBPs), as they occur in insects, form a distinct class of proteins that apparently has no closely related representatives in other animals. However, ticks, mites, spiders and millipedes contain genes encoding proteins with sequence similarity to insect OBPs. In this work, we have explored the structure and function of such non-insect OBPs in the mite Varroa destructor, a major pest of honey bee. Varroa OBPs present six cysteines paired into three disulphide bridges, but with positions in the sequence and connections different from those of their insect counterparts. VdesOBP1 structure was determined in two closely related crystal forms and appears to be a monomer. Its structure assembles five α-helices linked by three disulphide bridges, one of them exhibiting a different connection as compared to their insect counterparts. Comparison with classical OBPs reveals that the second of the six α-helices is lacking in VdesOBP1. Ligand-binding experiments revealed molecules able to bind only specific OBPs with a moderate affinity, suggesting that either optimal ligands have still to be identified, or post-translational modifications present in the native proteins may be essential for modulating binding activity, or else these OBPs might represent a failed attempt in evolution and are not used by the mites.


Subject(s)
Insect Proteins/chemistry , Receptors, Odorant/chemistry , Varroidae/chemistry , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Crystallography, X-Ray , Cysteine/chemistry , Fluorescent Dyes/metabolism , Kinetics , Ligands , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation , Protein Folding , Sequence Alignment , Sequence Homology, Amino Acid
11.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 6): 171-176, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34100775

ABSTRACT

GldL is an inner-membrane protein that is essential for the function of the type IX secretion system (T9SS) in Flavobacterium johnsoniae. The complex that it forms with GldM is supposed to act as a new rotary motor involved in the gliding motility of the bacterium. In the context of structural studies of GldL to gain information on the assembly and function of the T9SS, two camelid nanobodies were selected, produced and purified. Their interaction with the cytoplasmic domain of GldL was characterized and their crystal structures were solved. These nanobodies will be used as crystallization chaperones to help in the crystallization of the cytoplasmic domain of GldL and could also help to solve the structure of the complex using molecular replacement.


Subject(s)
Bacterial Proteins/immunology , Bacterial Secretion Systems/immunology , Flavobacterium/chemistry , Single-Domain Antibodies/chemistry , Animals , Camelus , Crystallography, X-Ray , Kinetics , Models, Molecular , Protein Domains , Protein Multimerization , Scattering, Radiation , Thermodynamics
13.
Eur Biophys J ; 50(3-4): 313-330, 2021 May.
Article in English | MEDLINE | ID: mdl-33792745

ABSTRACT

Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.


Subject(s)
Macromolecular Substances/analysis , Calorimetry , DNA , Humans , Ligands , Proteins
14.
ACS Omega ; 6(10): 6528-6536, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748564

ABSTRACT

Since the emergence of SARS-CoV-2 pandemic, clinical laboratories worldwide are overwhelmed with SARS-CoV-2 testing using the current gold standard: real-time reverse-transcription polymerase chain reaction (RT-PCR) assays. The large numbers of suspected cases led to shortages in numerous reagents such as specimen transport and RNA extraction buffers. We try to provide some answers on how strongly preanalytical issues affect RT-PCR results by reviewing the utility of different transport buffer media and virus inactivation procedures and comparing the literature data with our own recent findings. We show that various viral inactivation procedures and transport buffers are available and are less of a bottleneck for PCR-based methods. However, efficient alternative lysis buffers remain more difficult to find, and several fast RT-PCR assays are not compatible with guanidine-containing media, making this aspect more of a challenge in the current crisis. Furthermore, the availability of different SARS-CoV-2-specific RT-PCR kits with different sensitivities makes the definition of a general cutoff level for the cycle threshold (Ct) value challenging. Only a few studies have considered how Ct values relate to viral infectivity and how preanalytical issues might affect viral infectivity and RNA detection. We review the current data on the correlation between Ct values and viral infectivity. The presence of the SARS-CoV-2 viral genome in its own is not sufficient proof of infectivity and caution is needed in evaluation of the infectivity of samples. The correlation between Ct values and viral infectivity revealed an RT-PCR cutoff value of 34 cycles for SARS-CoV-2 infectivity using a laboratory-developed RT-PCR assay targeting the RdRp gene. While ideally each clinical laboratory should perform its own correlation, we believe this perspective article could be a reference point for others, in particular medical doctors and researchers interested in COVID-19 diagnostics, and a first step toward harmonization.

16.
Sci Rep ; 10(1): 7384, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355178

ABSTRACT

Porphyromonas gingivalis, the major human pathogen associated to periodontal diseases, utilizes the Bacteroidetes-specific type IX secretion system (T9SS) to export virulence factors. PorE is a periplasmic multi-domain lipoprotein associated to the outer membrane that was recently identified as essential for T9SS function. Little is known on T9SS at the structural level, and in particular its interaction with peptidoglycan. This prompted us to carry out structural studies on PorE full length as well as on its four isolated domains. Here we report the crystal structure of the C-terminal OmpA_C-like putative peptidoglycan-binding domain at 1.55 Å resolution. An electron density volume was identified in the protein cleft, making it possible to build a naturally-occurring peptidoglycan fragment. This result suggests that PorE interacts with peptidoglycan and that PorE could anchor T9SS to the cell wall.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Secretion Systems/chemistry , Membrane Proteins/chemistry , Porphyromonas gingivalis/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Crystallography, X-Ray , Membrane Proteins/genetics , Porphyromonas gingivalis/genetics , Protein Domains
17.
Methods ; 180: 35-44, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32156657

ABSTRACT

Producing intact recombinant membrane proteins for structural studies is an inherently challenging task due to their requirement for a cell-lipid environment. Most of the procedures developed involve isolating the protein by solubilization with detergent and further reconstitutions into artificial membranes. These procedures are highly time consuming and suffer from further drawbacks, including low yields and high cost. We describe here an alternative method for rapidly obtaining recombinant cell-surface membrane proteins displayed on extracellular vesicles (EVs) derived from cells in culture. Interaction between these membrane proteins and ligands can be analyzed directly on EVs. Moreover, EVs can also be used for protein structure determination or immunization purposes.


Subject(s)
Extracellular Vesicles/metabolism , Membrane Proteins/isolation & purification , Recombinant Proteins/isolation & purification , 5'-Nucleotidase/immunology , Cloning, Molecular , Cryoelectron Microscopy , Detergents/chemistry , Dynamic Light Scattering , Extracellular Vesicles/immunology , Extracellular Vesicles/ultrastructure , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Ligands , Mass Spectrometry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron , Plasmids/genetics
18.
Mol Cell ; 76(6): 922-937.e7, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31604602

ABSTRACT

In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.


Subject(s)
Bacteriophages/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/metabolism , Streptococcus thermophilus/enzymology , Viral Proteins/metabolism , Allosteric Regulation , Bacteriophages/genetics , Binding Sites , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/ultrastructure , DNA/genetics , DNA/ultrastructure , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , K562 Cells , Kinetics , Mutation , Protein Binding , Protein Conformation , Streptococcus thermophilus/genetics , Structure-Activity Relationship , Viral Proteins/genetics , Viral Proteins/ultrastructure
19.
Hum Mutat ; 40(12): 2258-2269, 2019 12.
Article in English | MEDLINE | ID: mdl-31237726

ABSTRACT

The ACTN1 gene has been implicated in inherited macrothrombocytopenia. To decipher the spectrum of variants and phenotype of ACTN1-related thrombocytopenia, we sequenced the ACTN1 gene in 272 cases of unexplained chronic or familial thrombocytopenia. We identified 15 rare, monoallelic, nonsynonymous and likely pathogenic ACTN1 variants in 20 index cases from 20 unrelated families. Thirty-one family members exhibited thrombocytopenia. Targeted sequencing was carried out on 12 affected relatives, which confirmed presence of the variant. Twenty-eight of 32 cases with monoallelic ACTN1 variants had mild to no bleeding complications. Eleven cases harbored 11 different unreported ACTN1 variants that were monoallelic and likely pathogenic. Nine variants were located in the α-actinin-1 (ACTN1) rod domain and were predicted to hinder dimer formation. These variants displayed a smaller increase in platelet size compared with variants located outside the rod domain. In vitro expression of the new ACTN1 variants induced actin network disorganization and led to increased thickness of actin fibers. These findings expand the repertoire of ACTN1 variants associated with thrombocytopenia and highlight the high frequency of ACTN1-related thrombocytopenia cases. The rod domain, like other ACTN1 functional domains, may be mutated resulting in actin disorganization in vitro and thrombocytopenia with normal platelet size in most cases.


Subject(s)
Actinin/chemistry , Actinin/genetics , Mutation , Sequence Analysis, DNA/methods , Thrombocytopenia/genetics , Adolescent , Adult , Aged , Child , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Mutagenesis, Site-Directed , Pedigree , Protein Domains , Young Adult
20.
Cell ; 177(7): 1701-1713.e16, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31155232

ABSTRACT

Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.


Subject(s)
Antibodies, Bispecific , Antigens, Ly/immunology , Antineoplastic Agents, Immunological , Cytotoxicity, Immunologic/drug effects , Killer Cells, Natural/immunology , Natural Cytotoxicity Triggering Receptor 1/immunology , Neoplasms, Experimental , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/pharmacology , Killer Cells, Natural/pathology , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...