Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862542

ABSTRACT

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Subject(s)
Astronauts , Cosmic Radiation , MicroRNAs , Space Flight , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Cosmic Radiation/adverse effects , DNA Breaks, Double-Stranded/radiation effects , Radiation Injuries/genetics , Radiation Injuries/prevention & control , Male , Mitochondria/radiation effects , Mitochondria/metabolism , Mitochondria/genetics , Female , Adult
2.
Skin Res Technol ; 30(3): e13638, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38454567

ABSTRACT

BACKGROUND: Skin wound healing is a complex mechanism which requires a lot of energy, mainly provided by mitochondrial respiration. However, little is known about the mitochondrial bioenergetics of mice skin. We sought to develop a microplate-based assay to directly measure oxygen consumption in whole mice skin with the goal of identifying mitochondrial dysfunction in diabetic skin using an extracellular flux. MATERIALS AND METHODS: Different parameters were optimized to efficiently measure the oxygen consumption rate (OCR). First, the most pertinent skin side of wild-type mice was first determined. Then, concentrations of mitochondrial inhibitors were then optimized to get the best efficacy. Finally, punch sizes were modulated to get the best OCR profile. RESULTS: Dermis had the best metabolic activity side of the skin. Unlike the increased concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and rotenone/antimycin A, which showed no improvement of these drugs' effects, varying the skin punch size was successful. Finally, type II diabetic (T2D) skin produced less ATP through mitochondrial metabolism and had a greater non-mitochondrial oxygen consumption than wild-type or type I diabetic (T1D) skin. CONCLUSION: Here we designed, for the first time, a reliable protocol to measure mitochondria function in whole mouse skin. Our optimized protocol was valuable in assessing alterations associated with diabetes and could be applied to future studies of pathological human skin metabolism.


Subject(s)
Diabetes Mellitus, Experimental , Mice , Humans , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Mitochondria/metabolism , Energy Metabolism , Oxygen Consumption , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology
3.
Aging (Albany NY) ; 15(22): 12702-12722, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38015712

ABSTRACT

The disturbance of intercellular communication is one of the hallmarks of aging. The goal of this study is to clarify the impact of chronological aging on extracellular vesicles (EVs), a key mode of communication in mammalian tissues. We focused on epidermal keratinocytes, the main cells of the outer protective layer of the skin which is strongly impaired in the skin of elderly. EVs were purified from conditioned medium of primary keratinocytes isolated from infant or aged adult skin. A significant increase of the relative number of EVs released from aged keratinocytes was observed whereas their size distribution was not modified. By small RNA sequencing, we described a specific microRNA (miRNA) signature of aged EVs with an increase abundance of miR-30a, a key regulator of barrier function in human epidermis. EVs from aged keratinocytes were found to be able to reduce the proliferation of young keratinocytes, to impact their organogenesis properties in a reconstructed epidermis model and to slow down the early steps of skin wound healing in mice, three features observed in aged epidermis. This work reveals that intercellular communication mediated by EVs is modulated during aging process in keratinocytes and might be involved in the functional defects observed in aged skin.


Subject(s)
Extracellular Vesicles , MicroRNAs , Aged , Humans , Animals , Mice , MicroRNAs/genetics , Keratinocytes , Epidermis , Aging/genetics , Mammals/genetics
4.
Skin Pharmacol Physiol ; 36(5): 249-258, 2023.
Article in English | MEDLINE | ID: mdl-37788642

ABSTRACT

INTRODUCTION: Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation. OBJECTIVE: The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism. METHODS: In this study, elastic fibers produced by dermal fibroblasts in 2D culture model were injured by elastase, and we observed the action of dill extract on elastic network by elastin immunofluorescence. Then action of dill extract was examined on mice skin by injuring elastin fibers by intradermal injection of elastase. Then elastin fibers were observed by second harmonic generation microscopy, and their functionality was evaluated by oscillatory shear stress tests. In order to understand mechanism by which dill acted on elastin fibers, enzymatic tests and real-time qPCR on cultured fibroblasts were performed. RESULTS: We evidence in vitro that dill extract is able to prevent elastin from elastase digestion. And we confirm in vivo that dill extract treatment prevents elastase digestion, allowing preservation of the cutaneous elastic network in mice and preservation of the cutaneous elastic properties. Although dill extract does not directly inhibit elastase activity, our results show that dill extract treatment increases mRNA expression of the endogenous inhibitor of elastase, elafin. CONCLUSION: Dill extract can thus be used to counteract the negative effects of elastase on the cutaneous elastic fiber network through modulation of PI3 gene expression.


Subject(s)
Anethum graveolens , Elastic Tissue , Mice , Animals , Elastic Tissue/metabolism , Elafin , Anethum graveolens/metabolism , Elastin/metabolism , Pancreatic Elastase/metabolism
5.
Int J Inflam ; 2023: 3001080, 2023.
Article in English | MEDLINE | ID: mdl-37663889

ABSTRACT

Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1ß, TNF-α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.

6.
Cells ; 12(12)2023 06 08.
Article in English | MEDLINE | ID: mdl-37371053

ABSTRACT

The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Recently, distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. The aim of this focus review is to bring the light of recent discoveries into white adipose tissue heterogeneity together with the biology of distinct ASCs subpopulations and to explore adipose tissue 3D models revealing their advantages, disadvantages, and contributions to elucidate the role of ASCs in obesity development. Recent advances in adipose tissue organoids opened an avenue of possibilities to recreate the main cellular and molecular events of obesity leading to a deep understanding of this inflammatory disease besides contributing to drug discovery. Furthermore, 3D organ-on-a-chip will add reproducibility to these adipose tissue models contributing to their translation to the pharmaceutical industry.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Reproducibility of Results , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue/metabolism , Subcutaneous Fat , Obesity/metabolism
7.
Nutrients ; 15(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299497

ABSTRACT

Growing evidence has demonstrated that maternal artificial sweetener (AS) consumption may not be a beneficial alternative when compared to sugar-sweetened beverages and potentially leads to metabolic dysfunction in adult offspring. Compromised skin integrity and wound healing associated with type 2 diabetes can lead to complications such as diabetic pressure injury (PI). In this context, the skin plays an important role in the maintenance of metabolic homeostasis, yet there is limited information on the influence of sugar- or AS-sweetened beverages during pregnancy on developmental programming and offspring skin homeostasis. This study examined the impact of maternal fructose or acesulfame-k consumption on offspring wound healing. Female C57Bl/6 mice received a chow diet ad libitum with either water (CD), fructose (FR; 34.7 mM fructose), or AS (AS; 12.5 mM Acesulfame-K) throughout pregnancy and lactation. PIs were induced in offspring at 9 weeks of age (n = 6/sex/diet). PIs and healthy skin biopsies were collected for later analysis. Maternal AS intake increased skin inflammatory markers in healthy biopsies while an FR diet increased Tgfb expression, and both diets induced subtle changes in inflammatory markers post-wound inducement in a sex-specific manner. Furthermore, a maternal FR diet had a significant effect on pressure wound severity and early wound healing delay, while AS maternal diet had a sex-specific effect on the course of the healing process. This study demonstrates the need for a better understanding of developmental programming as a mediator of later-life skin integrity and wound responsiveness.


Subject(s)
Diabetes Mellitus, Type 2 , Prenatal Exposure Delayed Effects , Pregnancy , Male , Animals , Mice , Female , Humans , Fructose/adverse effects , Fructose/metabolism , Sweetening Agents/pharmacology , Pilot Projects , Wound Healing , Inflammation , Maternal Nutritional Physiological Phenomena
8.
EBioMedicine ; 98: 104856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38251464

ABSTRACT

BACKGROUND: Diabetic foot ulcers (DFUs) are a common complication of diabetes, associated with important morbidity. Appropriate animal models of DFUs may improve drug development, and subsequently the success rate of clinical trials. However, while many models have been proposed, they are extremely heterogeneous, and no standard has emerged. We thus propose a systematic review with a network meta-analysis (NMA) to gather direct and indirect evidence, and compare the different mouse models of diabetes-related ulcers. METHODS: The systematic search was performed in Pubmed and Embase. The main outcomes were wound size measurement at days 3, 7, 11 and 15 (±1 day). The risk of bias and methodological quality of all included studies was assessed by using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. Meta-regressions were done on prespecified variables, including mouse strain, type of ulcer, sex, age, and use of a splint. FINDINGS: We included 295 studies. Among all models, only db/db, ob/ob, streptozotocin (STZ), and STZ + high fat diet mice showed a significantly delayed wound healing, compared with controls, at each time point. Age, sex and ulcer type had influence on wound healing, although not at all time points. INTERPRETATION: In conclusion, the db/db model is associated with the largest delay in wound healing The STZ model also exhibits significantly decreased wound healing. STZ + high fat diet and ob/ob mice may also be relevant models of diabetes-related ulcers, although the results rely on a more limited number of studies. FUNDING: This work was funded by the Agence Nationale de la Recherche (grant ANR-18-CE17-0017).


Subject(s)
Animal Experimentation , Diabetes Mellitus , Diabetic Foot , Animals , Mice , Network Meta-Analysis , Disease Models, Animal , Diabetic Foot/etiology , Diet, High-Fat , Streptozocin
9.
Biomedicines ; 10(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36359407

ABSTRACT

Many changes characterize skin aging, and the resulting dysfunctions still constitute a real challenge for our society. The aim of this study was to compare the skin aging of two rat strains, Wistar and Brown Norway (BN), considered as "poorly aging" and "healthy aging" models, respectively, and to assess the effect of alpha-lipoic acid (LPA), especially on skin microcirculation. To this purpose, various skin characteristics were studied at 6, 12, and 24 months and compared to the results of LPA treatment performed at 12 or 24 months. Skin aging occurred in both strains, but we showed an early occurrence of different age-related disorders in the Wistar strain compared to BN strain, especially regarding weight gain, glycemia dysregulation, basal skin perfusion, endothelial function, and skin resistance to low pressure. LPA treatment tended to improve skin resistance to low pressure in BN but not in Wistar despite the improvement of basal skin perfusion, endothelial function, and skin sensory sensitivity. Overall, this study confirmed the healthier aging of BN compared to Wistar strain and the positive effect of LPA on both general state and skin microcirculation.

10.
Eur J Dermatol ; 32(3): 305-311, 2022 05 01.
Article in English | MEDLINE | ID: mdl-36065535

ABSTRACT

Short- and long-term exposure to atmospheric pollution has significant health effects. The skin is the organ directly in contact with pollutants and is responsible for protection of the organism. Particulate matter (PM) such as polycyclic aromatic hydrocarbons (PAHs) are the basis of certain pulmonary as well as dermatological complications. Pollution exacerbates certain illnesses such as atopic dermatitis and cancer, and it may also participate in delaying wound healing and in the occurrence of chronic ailments such as diabetes. The aryl hydrocarbon receptor (AhR) transcription factor, at the core of these responses to pollutants, is expressed by all cells of the skin. The AhR is subject to tight regulation that depends on its ligand. Pollutants act in a deleterious manner via the AhR, influencing the behaviour of keratinocytes as well as fibroblasts. Natural ligands, on the other hand, allow the noxious effects of pollution to be countered. This non-systematic review of the literature shows that modulation of AhR appears to be an excellent therapeutic approach to improve or stop the cutaneous problems linked to pollution.


Subject(s)
Dermatitis, Atopic , Environmental Pollutants , Receptors, Aryl Hydrocarbon , Basic Helix-Loop-Helix Transcription Factors , Dermatitis, Atopic/metabolism , Environmental Pollutants/toxicity , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Receptors, Aryl Hydrocarbon/physiology , Skin/drug effects , Skin/metabolism
11.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35163744

ABSTRACT

Most chronic wounds are characterized by varying degrees of hypoxia and low partial pressures of O2 that may favor the development of the wound and/or delay healing. However, most studies regarding extracellular matrix remodeling in wound healing are conducted under normoxic conditions. Here, we investigated the consequences of hypoxia on elastic network formation, both in a mouse model of pressure-induced hypoxic ulcer and in human primary fibroblasts cultured under hypoxic conditions. In vitro, hypoxia inhibited elastic fiber synthesis with a reduction in fibrillin-2 expression at the mRNA and protein levels. Lysyl oxidase maturation was reduced, concomitant with lower enzymatic activity. Fibrillin-2 and lysyl oxidase could interact directly, whereas the downregulation of fibrillin-2 was associated with deficient lysyl oxidase maturation. Elastic fibers were not synthesized in the hypoxic inflammatory tissues resulting from in vivo pressure-induced ulcer. Tropoelastin and fibrillin-2 were expressed sparsely in hypoxic tissues stained with carbonic anhydrase IX. Different hypoxic conditions in culture resulted in the arrest of elastic fiber synthesis. The present study demonstrated the involvement of FBN2 in regulating elastin deposition in adult skin models and described the specific impact of hypoxia on the elastin network without consequences on collagen and fibronectin networks.


Subject(s)
Elastic Tissue , Elastin , Animals , Elastic Tissue/metabolism , Elastin/metabolism , Fibrillin-2/genetics , Fibroblasts/metabolism , Gene Silencing , Humans , Hypoxia/genetics , Hypoxia/metabolism , Mice , Protein-Lysine 6-Oxidase/metabolism , Ulcer/metabolism
12.
Acta Biomater ; 140: 324-337, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34843951

ABSTRACT

Injectable hydrogels that polymerize directly in vivo hold significant promises in clinical settings to support the repair of damaged or failing tissues. Existing systems that allow cellular and tissue ingrowth after injection are limited because of deficient porosity and lack of oxygen and nutrient diffusion inside the hydrogels. Here is reported for the first time an in vivo injectable hydrogel in which the porosity does not pre-exist but is formed concomitantly with its in situ injection by a controlled effervescent reaction. The hydrogel tailorable crosslinking, through the reaction of polyethylene glycol with lysine dendrimers, allows the mixing and injection of precursor solutions from a dual-chamber syringe while entrapping effervescently generated CO2 bubbles to form highly interconnected porous networks. The resulting structures allow preserving modular mechanical properties (from 12.7 ± 0.9 to 29.9 ± 1.7 kPa) while being cytocompatible and conducive to swift cellular attachment, proliferation, in-depth infiltration and extracellular matrix deposition. Most importantly, the subcutaneously injected porous hydrogels are biocompatible, undergo tissue remodeling and support extensive neovascularisation, which is of significant advantage for the clinical repair of damaged tissues. Thus, the porosity and injectability of the described effervescent hydrogels, together with their biocompatibility and versatility of mechanical properties, open broad perspectives for various regenerative medicine or material applications, since effervescence could be combined with a variety of other systems of swift crosslinking. STATEMENT OF SIGNIFICANCE: A major challenge in hydrogel design is the synthesis of injectable formulations allowing easy handling and dispensing in the site of interest. However, the lack of adequate porosity inside hydrogels prevent cellular entry and, therefore, vascularization and tissue ingrowth, limiting the regenerative potential of a vast majority of injectable hydrogels. We describe here the development of an acellular hydrogel that can be injected directly in situ while allowing the simultaneous formation of porosity. Such hydrogel would facilitate handling through injection while providing a porous structure supporting vascularization and tissue ingrowth.


Subject(s)
Hydrogels , Regenerative Medicine , Biocompatible Materials/chemistry , Extracellular Matrix/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Porosity , Tissue Engineering/methods
13.
J Tissue Viability ; 31(1): 1-10, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34776327

ABSTRACT

BACKGROUND: Consumer engagement is a requirement of high quality clinical guidelines. Developing strategies to engage consumers and incorporate the perspectives of individuals with or at risk of pressure ulcers/injuries and their informal caregivers was one priority in the recent update of the EPUAP/NPIAP/PPPIA's Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. AIMS: The aims were to determine the goals of individuals and caregivers for pressure ulcer/injury care, priorities for pressure ulcer/injury education and biggest problems related to pressure ulcers/injuries. METHODS: An online, anonymous, international 10-item survey, accessible in nine languages was provided to individuals and their caregivers from April to October 2018. Descriptive statistics were used for quantitative data and a thematic analysis approach was used to analyse qualitative data. RESULTS: There were 1233 individuals from 27 countries who completed the survey. Overall, individuals and caregivers had similar goals of care. Reducing the size of pressure ulcer/injury was selected more often as a care goal than complete healing. Individuals, compared to caregivers, considered managing pain more important. Qualitative data analysis identified five themes including knowledge, attitudes, and skills; risk factors for pressure ulcer/injury; accessing pressure ulcer/injury care; quality of life for patients and caregivers; and the pressure ulcer/injury. CONCLUSIONS: The consumer survey provided consumer engagement and perspective that was incorporated into guideline development, including consideration during evaluation of the relevance and acceptability of recommendations, and assignment of recommendation strength ratings.


Subject(s)
Caregivers , Pressure Ulcer , Humans , Pressure Ulcer/prevention & control , Quality of Life , Skin Care , Surveys and Questionnaires
14.
Biol Rev Camb Philos Soc ; 97(3): 874-895, 2022 06.
Article in English | MEDLINE | ID: mdl-34913582

ABSTRACT

Skin is a key organ maintaining internal homeostasis by performing many functions such as water loss prevention, body temperature regulation and protection from noxious substance absorption, microorganism intrusion and physical trauma. Skin ageing has been well studied and it is well known that physiological changes in the elderly result in higher skin fragility favouring the onset of skin diseases. For example, prolonged and/or high-intensity pressure may suppress local blood flow more easily, disturbing cell metabolism and inducing pressure injury (PI) formation. Pressure injuries (PIs) represent a significant problem worldwide and their prevalence remains too high. A higher PI prevalence is correlated with an elderly population. Newborn skin evolution has been less studied, but some data also report a higher PI prevalence in this population compared to older children, and several authors also consider this skin as physiologically fragile. In this review, we compare the characteristics of newborn and elderly skin in order to determine common features that may explain their fragility, especially regarding PI risk. We show that, despite differences in appearance, they share many common features leading to higher fragility to shear and pressure forces, not only at the structural level but also at the cellular and molecular level and in terms of physiology. Both newborn and elderly skin have: (i) a thinner epidermis; (ii) a thinner dermis containing a less-resistant collagen network, a higher collagen III:collagen I ratio and less elastin; (iii) a flatter dermal-epidermal junction (DEJ) with lower anchoring systems; and (iv) a thinner hypodermis, resulting in lower mechanical resistance to skin damage when pressure or shear forces are applied. At the molecular level, reduced expression of transforming growth factor ß (TGFß) and its receptor TGFß receptor II (TßRII) is involved in the decreased production and/or increased degradation of various dermal extracellular matrix (ECM) components. Epidermal fragility also involves a higher skin pH which decreases the activity of key enzymes inducing ceramide deficiency and reduced barrier protection. This seems to be correlated with higher PI prevalence in some situations. Some data also suggest that stratum corneum (SC) dryness, which may disturb cell metabolism, also increases the risk of PI formation. Besides this structural fragility, several skin functions are also less efficient. Low applied pressures induce skin vessel vasodilation via a mechanism called pressure-induced vasodilation (PIV). Individuals lacking a normal PIV response show an early decrease in cutaneous blood flow in response to the application of very low pressures, reflecting vascular fragility of the skin that increases the risk of ulceration. Due to changes in endothelial function, skin PIV ability decreases during skin ageing, putting it at higher risk of PI formation. In newborns, some data lead us to hypothesize that the nitric oxide (NO) pathway is not fully functional at birth, which may partly explain the higher risk of PI formation in newborns. In the elderly, a lower PIV ability results from impaired functionality of skin innervation, in particular that of C-fibres which are involved in both touch and pain sensation and the PIV mechanism. In newborns, skin sensitivity differs from adults due to nerve system immaturity, but the role of this in PIV remains to be determined.


Subject(s)
Pressure Ulcer , Transforming Growth Factor beta , Vascular Diseases , Adolescent , Adult , Aged , Child , Humans , Infant, Newborn , Collagen , Extracellular Matrix , Skin Physiological Phenomena , Transforming Growth Factor beta/metabolism
15.
Stem Cell Res Ther ; 12(1): 480, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34454629

ABSTRACT

BACKGROUND: In human subcutaneous adipose tissue, the superficial fascia distinguishes superficial and deep microenvironments showing extensions called retinacula cutis. The superficial subcutaneous adipose tissue has been described as hyperplastic and the deep subcutaneous adipose tissue as inflammatory. However, few studies have described stromal-vascular fraction (SVF) content and adipose-derived stromal/stem cells (ASCs) behavior derived from superficial and deep subcutaneous adipose tissue. In this study, we analyzed a third conjunctive microenvironment: the retinacula cutis superficialis derived from superficial subcutaneous adipose tissue. METHODS: The samples of abdominal human subcutaneous adipose tissue were obtained during plastic aesthetic surgery in France (Declaration DC-2008-162) and Brazil (Protocol 145/09). RESULTS: The SVF content was characterized in situ by immunofluorescence and ex vivo by flow cytometry revealing a high content of pre-adipocytes rather in superficial subcutaneous adipose tissue microenvironment. Adipogenic assays revealed higher percentage of lipid accumulation area in ASCs from superficial subcutaneous adipose tissue compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001). The high adipogenic potential of superficial subcutaneous adipose tissue was corroborated by an up-regulation of adipocyte fatty acid-binding protein (FABP4) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) and of C/EBPα (CCAAT/enhancer-binding protein alpha) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) microenvironments. Curiously, ASCs from retinacula cutis superficialis showed a higher level of adiponectin receptor gene compared with superficial subcutaneous adipose tissue (p = 0.0409), widely known as an anti-inflammatory hormone. Non-induced ASCs from retinacula cutis superficialis showed higher secretion of human vascular endothelial growth factor (VEGF), compared with superficial (p = 0.0485) and deep (p = 0.0112) subcutaneous adipose tissue and with adipogenic-induced ASCs from superficial (p = 0.0175) and deep (p = 0.0328) subcutaneous adipose tissue. Furthermore, ASCs from retinacula cutis superficialis showed higher secretion of Chemokine (C-C motif) ligand 5 (CCL5) compared with non-induced (p = 0.0029) and induced (p = 0.0089) superficial subcutaneous adipose tissue. CONCLUSIONS: This study highlights the contribution to ASCs from retinacula cutis superficialis in their angiogenic property previously described for the whole superficial subcutaneous adipose tissue besides supporting its adipogenic potential for superficial subcutaneous adipose tissue.


Subject(s)
Subcutaneous Tissue , Vascular Endothelial Growth Factor A , Adipogenesis , Humans , Subcutaneous Fat , Subcutaneous Fat, Abdominal
16.
Cells ; 10(8)2021 08 05.
Article in English | MEDLINE | ID: mdl-34440765

ABSTRACT

Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.


Subject(s)
Autophagy , COVID-19/physiopathology , Sarcoidosis/physiopathology , COVID-19/enzymology , Genomics , Humans , Mitophagy , Protein Serine-Threonine Kinases , Sarcoidosis/enzymology , Exome Sequencing
17.
Article in English | MEDLINE | ID: mdl-33903117

ABSTRACT

INTRODUCTION: Diabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood. RESEARCH DESIGN AND METHODS: To investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503. RESULTS: We found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs. CONCLUSION: Glyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.


Subject(s)
Glycation End Products, Advanced , Glyoxal , Fibroblasts , Humans , Skin , Wound Healing
18.
J Biomed Mater Res A ; 109(6): 926-937, 2021 06.
Article in English | MEDLINE | ID: mdl-32779367

ABSTRACT

Poly(ethylene glycol) (PEG) hydrogels have been extensively used as scaffolds for tissue engineering applications, owing to their biocompatibility, chemical versatility, and tunable mechanical properties. However, their bio-inert properties require them to be associated with additional functional moieties to interact with cells. To circumvent this need, we propose here to reticulate PEG molecules with poly(L-lysine) dendrigrafts (DGL) to provide intrinsic cell functionalities to PEG-based hydrogels. The physico-chemical characteristics of the resulting hydrogels were studied in regard of the concentration of each component. With increasing amounts of DGL, the cross-linking time and swelling ratio could be decreased, conversely to mechanical properties, which could be tailored from 7.7 ± 0.7 to 90 ± 28.8 kPa. Furthermore, fibroblasts adhesion, viability, and morphology on hydrogels were then assessed. While cell adhesion significantly increased with the concentration of DGL, cell viability was dependant of the ratio of DGL and PEG. Cell morphology and proliferation; however, appeared mainly related to the overall hydrogel rigidity. To allow cell infiltration and cell growth in 3D, the hydrogels were rendered porous. The biocompatibility of resulting hydrogels of different compositions and porosities was evaluated by 3 week subcutaneous implantations in mice. Hydrogels allowed an extensive cellular infiltration with a mild foreign body reaction, histological evidence of hydrogel degradation, and neovascularization.


Subject(s)
Biocompatible Materials/chemistry , Polyethylene Glycols/chemistry , Polylysine/chemistry , Tissue Scaffolds , Animals , Biocompatible Materials/adverse effects , Cell Adhesion , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cross-Linking Reagents , Foreign-Body Reaction , Humans , Hydrogels , Mechanical Phenomena , Mice , Neovascularization, Physiologic/drug effects , Polyethylene Glycols/adverse effects , Polylysine/adverse effects , Porosity , Tissue Scaffolds/adverse effects
19.
J Tissue Viability ; 29(3): 197-203, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32414554

ABSTRACT

There has been an ongoing debate in the healthcare community about what pressure ulcers/injuries are, and how to name, define and classify them. The aim of this discussion paper is to provide a brief theoretical background about pressure ulcer/injury classification, to explain the approach the Guideline Governance Group has taken during the 2019 update of the International Guideline for 'Prevention and Treatment of Pressure Ulcers/Injuries' and to share views on how to best implement pressure ulcer/injury classification. First formal pressure ulcer/injury classifications were introduced in the 1950s and today various pressure ulcer/injury classification systems are used worldwide. Dissimilarities between commonly used classification systems may be considered a limitation that impedes clinical and scientific communication. However, the conceptual meaning of pressure ulcer/injury categories described within the various classification systems is comparable and the current evidence does not indicate that one classification is superior to another. Therefore, the Guideline Governance Group created a crosswalk of the major pressure ulcer/injury classifications in common use across different geographic regions. Clinicians are encouraged to use the classification system adopted by their healthcare setting in the most consistent way. The validity of pressure ulcer/injury classification is closely linked to its intended purpose. Studying measurement properties of pressure ulcer/injury classification systems must follow state-of-the-art methods. Structured educational interventions are helpful for improving diagnostic accuracy and reducing misclassification of pressure ulcers/injuries. Implementation of innovative skin and soft tissue assessments and revised pressure ulcer/injury classifications are only worth implementing, when the diagnostic information improves clinical care.


Subject(s)
Internationality , Pressure Ulcer/classification , Severity of Illness Index , Humans , Pressure Ulcer/complications , Pressure Ulcer/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...