Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 88(11): 1807-14, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16814917

ABSTRACT

Cadmium is found in the environment as part of several, mainly zinc-rich, ores. It has been used in many technological applications, but biological systems generally failed to safely deal with this element. In mammalian biology, cadmium exposure jeopardizes health and mechanisms of cadmium toxicity are multifarious. Mainly because bioavailable cadmium mimics other metals that are essential to diverse biological functions, cadmium follows a Trojan horse strategy to get assimilated. Metals susceptible to cadmium deceit include calcium, zinc, and iron. The wealth of data addressing cadmium toxicity in animal cells is briefly reviewed with special emphasis on disturbance of the homeostasis of calcium, zinc, and iron. A limited number of tissues and cell types are considered as main targets for cadmium toxicity. Still, the diversity of pathways affected by cadmium exposure points to a more general threat to basic cellular functions. The poor efficiency of cellular export systems for cadmium explains the long residence time of the element in mammals. Therefore, proper disposal and educated uses of this technologically appealing, but biologically malicious, element should be favored in the future. The comprehensive knowledge of cadmium biological effects is indeed a necessary step to protect human and animal populations from environmental and anthropological exposures.


Subject(s)
Cadmium/toxicity , Cell Survival/drug effects , Metals/pharmacology , Animals , Kinetics , Models, Biological
2.
J Neural Transm Suppl ; (65): 89-100, 2003.
Article in English | MEDLINE | ID: mdl-12946051

ABSTRACT

The development of animal models of Parkinson's disease is of great importance in order to test substitutive or neuroprotective strategies for Parkinson's disease. Such models should reproduce the main characteristics of the disease, such as a selective lesion of dopaminergic neurons that evolves over time and the presence of neuronal inclusions known as Lewy bodies. Optimally, such models should also reproduce the lesion of non-dopaminergic neurons observed in a great majority of patients with Parkinson's disease. From a behavioral point of view, a parkinsonian syndrome should be observed, ideally with akinesia, rigidity and rest tremor. These symptoms should be alleviated by dopamine replacement therapy, which may in turn lead to side effects such as dyskinesia. In this review, we analyze the main characteristics of experimental models of Parkinson's disease induced by neurotoxic compounds such as 6-hydroxydopamine, MPTP and rotenone. We show that, whereas MPTP and 6-hydroxydopamine induce a selective loss of catecholaminergic neurons that in most cases evolves over a short period of time, rotenone infusion by osmotic pumps can induce a chronically progressive degeneration of dopaminergic neurons and also of non-dopaminergic neurons in both the basal ganglia and the brainstem.


Subject(s)
Disease Models, Animal , Nerve Degeneration/chemically induced , Neurons/drug effects , Parkinson Disease , Rodentia , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Adrenergic Agents , Animals , Basal Ganglia/drug effects , Basal Ganglia/metabolism , Brain Stem/drug effects , Brain Stem/metabolism , Dopamine/metabolism , Dopamine Agents , Oxidopamine , Rotenone , Uncoupling Agents
3.
Ann N Y Acad Sci ; 991: 214-28, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12846989

ABSTRACT

The glial reaction is generally considered to be a consequence of neuronal death in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In Parkinson's disease, postmortem examination reveals a loss of dopaminergic neurons in the substantia nigra associated with a massive astrogliosis and the presence of activated microglial cells. Recent evidence suggests that the disease may progress even when the initial cause of neuronal degeneration has disappeared, suggesting that toxic substances released by the glial cells may be involved in the propagation and perpetuation of neuronal degeneration. Glial cells can release deleterious compounds such as proinflammatory cytokines (TNF-alpha, Il-1beta, IFN-gamma), which may act by stimulating nitric oxide production in glial cells, or which may exert a more direct deleterious effect on dopaminergic neurons by activating receptors that contain intracytoplasmic death domains involved in apoptosis. In line with this possibility, an activation of proteases such as caspase-3 and caspase-8, which are known effectors of apoptosis, has been reported in Parkinson's disease. Yet, caspase inhibitors or invalidation of TNF-alpha receptors does not protect dopaminergic neurons against degeneration in experimental models of the disease, suggesting that manipulation of a single signaling pathway may not be sufficient to protect dopaminergic neurons. In contrast, the antiinflammatory drugs pioglitazone, a PPAR-gamma agonist, and the tetracycline derivative minocycline have been shown to reduce glial activation and protect the substantia nigra in an animal model of the disease. Inhibition of the glial reaction and the inflammatory processes may thus represent a therapeutic target to reduce neuronal degeneration in Parkinson's disease.


Subject(s)
Neuroglia , Parkinson Disease/physiopathology , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Dopamine/metabolism , Humans , Inflammation/etiology , Nerve Degeneration/physiopathology , Neurons/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...