Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(22): 4834-4847, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37853793

ABSTRACT

Integrating flowing cells, such as immune cells or circulating tumour cells, within a microphysiological system is crucial for body-on-a-chip applications. However, ensuring unimpeded recirculation of cells is a significant challenge. Closed microfluidic devices have a no-slip boundary condition along channel walls and a defined chip geometry (laminar flow) that hinders the ability to freely control cell flow. Open microfluidic devices, where the bottom device boundary is an air-liquid interface (ALI), e.g., hanging drop networks (HDNs), offer the advantage of an easily-actuatable fluid-phase geometry, where cells can either flow or stagnate. In this paper, we optimized a hanging-drop-integrated pneumatic-pump system for closed-loop recirculation of particles (i.e., beads or cells). Experiments with both beads and cells in cell culture medium initially resulted in particle stagnation, which was suggestive of a pseudo-no-slip boundary condition at the ALI. Transmission electron microscopy and dynamic light scattering measurements of the ALI suggested that aggregation of submicron-scale cell-culture-medium components is the cause of the pseudo-no-slip boundary condition. We used the finite element method to study the forces on particles at the ALI and to optimize HDN design (drop aperture) and operation (drop height) parameters. Based on this analysis, we report a phase diagram delineating the conditions for free flow or stagnation of particles at the ALI of hanging drops. Using our experimental setup with 3.5 mm drop apertures, we conducted particle flow experiments while actuating drop heights. We confirmed the ability to control the flow or stagnation of particles by actuating the height of hanging drops: a drop height over 300 µm led to particle stagnation and a drop height under 300 µm allowed for particle flow. This particle-flow control, combined with the ease of integrating scaffold-free organ models (microtissues or organoids) in HDNs, constitutes the basis for an experimental setup enabling the control of the residence time of single cells around 3D organ models.


Subject(s)
Cell Culture Techniques , Spheroids, Cellular , Cell Culture Techniques/methods , Cell Movement , Lab-On-A-Chip Devices , Microphysiological Systems
2.
Micromachines (Basel) ; 13(7)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35888941

ABSTRACT

Microfluidic-drop networks consist of several stable drops-interconnected through microfluidic channels-in which organ models can be cultured long-term. Drop networks feature a versatile configuration and an air-liquid interface (ALI). This ALI provides ample oxygenation, rapid liquid turnover, passive degassing, and liquid-phase stability through capillary pressure. Mathematical modeling, e.g., by using computational fluid dynamics (CFD), is a powerful tool to design drop-based microfluidic devices and to optimize their operation. Although CFD is the most rigorous technique to model flow, it falls short in terms of computational efficiency. Alternatively, the hydraulic-electric analogy is an efficient "first-pass" method to explore the design and operation parameter space of microfluidic-drop networks. However, there are no direct electric analogs to a drop, due to the nonlinear nature of the capillary pressure of the ALI. Here, we present a circuit-based model of hanging- and standing-drop compartments. We show a phase diagram describing the nonlinearity of the capillary pressure of a hanging drop. This diagram explains how to experimentally ensure drop stability. We present a methodology to find flow rates and pressures within drop networks. Finally, we review several applications, where the method, outlined in this paper, was instrumental in optimizing design and operation.

3.
Microsyst Nanoeng ; 8: 14, 2022.
Article in English | MEDLINE | ID: mdl-35136653

ABSTRACT

As 3D in vitro tissue models become more pervasive, their built-in nutrient, metabolite, compound, and waste gradients increase biological relevance at the cost of analysis simplicity. Investigating these gradients and the resulting metabolic heterogeneity requires invasive and time-consuming methods. An alternative is using electrochemical biosensors and measuring concentrations around the tissue model to obtain size-dependent metabolism data. With our hanging-drop-integrated enzymatic glucose biosensors, we conducted current measurements within hanging-drop compartments hosting spheroids formed from the human colorectal carcinoma cell line HCT116. We developed a physics-based mathematical model of analyte consumption and transport, considering (1) diffusion and enzymatic conversion of glucose to form hydrogen peroxide (H2O2) by the glucose-oxidase-based hydrogel functionalization of our biosensors at the microscale; (2) H2O2 oxidation at the electrode surface, leading to amperometric H2O2 readout; (3) glucose diffusion and glucose consumption by cancer cells in a spherical tissue model at the microscale; (4) glucose and H2O2 transport in our hanging-drop compartments at the macroscale; and (5) solvent evaporation, leading to glucose and H2O2 upconcentration. Our model relates the measured currents to the glucose concentrations generating the currents. The low limit of detection of our biosensors (0.4 ± 0.1 µM), combined with our current-fitting method, enabled us to reveal glucose dynamics within our system. By measuring glucose dynamics in hanging-drop compartments populated by cancer spheroids of various sizes, we could infer glucose distributions within the spheroid, which will help translate in vitro 3D tissue model results to in vivo.

4.
Adv Biol (Weinh) ; 5(8): e2100609, 2021 08.
Article in English | MEDLINE | ID: mdl-34145989

ABSTRACT

Safety assessment of the effects of developmental toxicants on pregnant women is challenging, and systemic effects in embryo-maternal interactions are largely unknown. However, most developmental toxicity studies rely on animal trials, while in vitro platforms that recapitulate the maternal-placental-embryonic axis are missing. Here, the development of a dedicated microfluidic device for co-cultivation of a placental barrier and 3D embryoid bodies to enable systemic toxicity testing at the embryo-maternal interface is reported. The microfluidic platform features simple handling and recuperation of both tissue models, which facilitates post-hoc in-depth analysis at the tissue and single-cell level. Gravity-driven flow enables inter-tissue communication through the liquid phase as well as simple and robust operation and renders the platform parallelizable. As a proof of concept and to demonstrate platform use for systemic embryotoxicity testing in vitro, maternal exposure to plastic microparticles is emulated, and microparticle effects on the embryo-placental co-culture are investigated.


Subject(s)
Microfluidics , Placenta , Animals , Coculture Techniques , Embryoid Bodies , Female , Humans , Lab-On-A-Chip Devices , Pregnancy
5.
Front Bioeng Biotechnol ; 9: 674431, 2021.
Article in English | MEDLINE | ID: mdl-34055765

ABSTRACT

Islet perifusion systems can be used to monitor the highly dynamic insulin release of pancreatic islets in glucose-stimulated insulin secretion (GSIS) assays. Here, we present a new generation of the microfluidic hanging-drop-based islet perifusion platform that was developed to study the alterations in insulin secretion dynamics from single pancreatic islet microtissues at high temporal resolution. The platform was completely redesigned to increase experimental throughput and to reduce operational complexity. The experimental throughput was increased fourfold by implementing a network of interconnected hanging drops, which allows for performing GSIS assays with four individual islet microtissues in parallel with a sampling interval of 30 s. We introduced a self-regulating drop-height mechanism that enables continuous flow and maintains a constant liquid volume in the chip, which enables simple and robust operation. Upon glucose stimulation, reproducible biphasic insulin release was simultaneously observed from all islets in the system. The measured insulin concentrations showed low sample-to-sample variation as a consequence of precise liquid handling with stable drop volumes, equal flow rates in the channels, and accurately controlled sampling volumes in all four drops. The presented device will be a valuable tool in islet and diabetes research for studying dynamic insulin secretion from individual pancreatic islets.

6.
Adv Biosyst ; 4(3): e1900291, 2020 03.
Article in English | MEDLINE | ID: mdl-32293140

ABSTRACT

Insulin is released from pancreatic islets in a biphasic and pulsatile manner in response to elevated glucose levels. This highly dynamic insulin release can be studied in vitro with islet perifusion assays. Herein, a novel platform to perform glucose-stimulated insulin secretion (GSIS) assays with single islets is presented for studying the dynamics of insulin release at high temporal resolution. A standardized human islet model is developed and a microfluidic hanging-drop-based perifusion system is engineered, which facilitates rapid glucose switching, minimal sample dilution, low analyte dispersion, and short sampling intervals. Human islet microtissues feature robust and long-term glucose responsiveness and demonstrate reproducible dynamic GSIS with a prominent first phase and a sustained, pulsatile second phase. Perifusion of single islet microtissues produces a higher peak secretion rate, higher secretion during the first and second phases of insulin release, as well as more defined pulsations during the second phase in comparison to perifusion of pooled islets. The developed platform enables to study compound effects on both phases of insulin secretion as shown with two classes of insulin secretagogs. It provides a new tool for studying physiologically relevant dynamic insulin secretion at comparably low sample-to-sample variation and high temporal resolution.


Subject(s)
Glucose/metabolism , Insulin/metabolism , Islets of Langerhans , Models, Biological , Tissue Array Analysis/methods , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drug Discovery/methods , Exenatide/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Microfluidic Analytical Techniques/methods , Tolbutamide/pharmacology
7.
Adv Biosyst ; 3(5): e1900018, 2019 05.
Article in English | MEDLINE | ID: mdl-32627410

ABSTRACT

Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.


Subject(s)
Lab-On-A-Chip Devices , Microchip Analytical Procedures , Models, Biological , Tissue Engineering , Humans
8.
SLAS Technol ; 24(1): 79-95, 2019 02.
Article in English | MEDLINE | ID: mdl-30289726

ABSTRACT

Microphysiological systems hold the promise to increase the predictive and translational power of in vitro substance testing owing to their faithful recapitulation of human physiology. However, the implementation of academic developments in industrial settings remains challenging. We present an injection-molded microfluidic microtissue (MT) culture chip that features two channels with 10 MT compartments each and that was designed in compliance with microtiter plate standard formats. Polystyrene as a chip material enables reliable, large-scale production and precise control over experimental conditions due to low adsorption or absorption of small, hydrophobic molecules at or into the plastic material in comparison with predecessor chips made of polydimethylsiloxane. The chip is operated by tilting, which actuates gravity-driven flow between reservoirs at both ends of every channel, so that the system does not require external tubing or pumps. The flow rate can be modulated by adjusting the tilting angle on demand. The top-open design of the MT compartment enables efficient MT loading using standard or advanced pipetting equipment, ensures oxygen availability in the chip, and allows for high-resolution imaging. Every channel can be loaded with up to 10 identical or different MTs, as demonstrated by culturing liver and tumor MTs in the same medium channel on the chip.


Subject(s)
Microfluidics/instrumentation , Microfluidics/methods , Organ Culture Techniques/methods , Tissue Culture Techniques/methods , Humans , Polystyrenes , Tissue Scaffolds
9.
Sci Rep ; 7(1): 245, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28325895

ABSTRACT

This work focuses on modelling design and operation of "microfluidic sample traps" (MSTs). MSTs regroup a widely used class of microdevices that incorporate wells, recesses or chambers adjacent to a channel to individually trap, culture and/or release submicroliter 3D tissue samples ranging from simple cell aggregates and spheroids, to ex vivo tissue samples and other submillimetre-scale tissue models. Numerous MST designs employing various trapping mechanisms have been proposed in the literature, spurring the development of 3D tissue models for drug discovery and personalized medicine. Yet, there lacks a general framework to optimize trapping stability, trapping time, shear stress, and sample metabolism. Herein, the effects of hydrodynamics and diffusion-reaction on tissue viability and device operation are investigated using analytical and finite element methods with systematic parametric sweeps over independent design variables chosen to correspond to the four design degrees of freedom. Combining different results, we show that, for a spherical tissue of diameter d < 500 µm, the simplest, closest to optimal trap shape is a cube of dimensions w equal to twice the tissue diameter: w = 2d. Furthermore, to sustain tissues without perfusion, available medium volume per trap needs to be 100× the tissue volume to ensure optimal metabolism for at least 24 hours.


Subject(s)
Cell Culture Techniques/methods , Microfluidics/methods , Cell Line , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...