Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37729615

ABSTRACT

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Subject(s)
Antineoplastic Agents , Leukemia, Megakaryoblastic, Acute , Humans , Child , Child, Preschool , Animals , Mice , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Leukemia, Megakaryoblastic, Acute/pathology , Proteomics , Transcription Factors , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins
3.
Genes Chromosomes Cancer ; 59(2): 125-130, 2020 02.
Article in English | MEDLINE | ID: mdl-31515871

ABSTRACT

Infant acute lymphoblastic leukemias (ALL) are rare hematological malignancies occurring in children younger than 1 year of age, most frequently associated with KMT2A rearrangements (KMT2A-r). The smaller subset without KMT2A-r, which represents 20% of infant ALL cases, is poorly characterized. Here we report two cases of chemotherapy-sensitive non-KMT2A-r infant ALL. Transcriptome analyses revealed identical ACIN1-NUTM1 gene fusions in both cases, derived from cryptic chromosomal rearrangements undetected by standard cytogenetic approaches. Two isoforms of the gene fusion, joining exons 3 or 4 of ACIN1 to exon 3 of NUTM1, were identified. Both fusion transcripts contained the functional DNA-binding SAP (SAF-A/B, Acinus, and PIAS) domain of ACIN1 and most of NUTM1. The detection of the ACIN1-NUTM1 fusion by RT-PCR allowed the molecular monitoring of minimal residual disease in a clinical setting. Based on publicly available genomic datasets and literature review, we predict that NUTM1 gene fusions are recurrent events in infant ALL. As such, we propose two clinically relevant assays to screen for NUTM1 rearrangements in bone marrow cells, independent of the fusion partner: NUMT1 immunohistochemistry and NUTM1 RNA expression. In sum, our study identifies ACIN1-NUTM1 as a recurrent and possibly cryptic fusion in non-KMT2A-r infant ALL, provides clinical tools to screen for NUTM1-rearranged leukemia and contributes to the refinement of this new subgroup.


Subject(s)
Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromosome Aberrations , Cytogenetics , Gene Fusion , Gene Rearrangement/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Immunohistochemistry , Infant, Newborn , Leukemia, Myeloid, Acute/genetics , Male , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Oncogene Proteins, Fusion/metabolism
4.
Blood Adv ; 3(21): 3307-3321, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31698461

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.


Subject(s)
Biomarkers , Disease Models, Animal , Leukemia, Megakaryoblastic, Acute/etiology , Leukemia, Megakaryoblastic, Acute/pathology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Retinoblastoma-Binding Protein 2/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology/methods , Disease Susceptibility , Gene Expression , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Leukemia, Megakaryoblastic, Acute/therapy , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Xenograft Model Antitumor Assays
5.
Front Oncol ; 9: 772, 2019.
Article in English | MEDLINE | ID: mdl-31475115

ABSTRACT

Shwachman-Diamond syndrome (SDS) is a rare and systemic disease mostly caused by mutations in the SBDS gene and characterized by pancreatic insufficiency, skeletal abnormalities, and a bone marrow dysfunction. In addition, SDS patients are predisposed to develop myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), typically during adulthood and associated with TP53 mutations. Although most SDS diagnoses are established in childhood, the nature and frequency of serial bone marrow cell investigations during the patients' lifetime remain a debatable topic. The precise molecular mechanisms leading to AML progression in SDS patients have not been fully elucidated because the patient cohorts are small and most disease monitoring is conducted using standard histological and cytogenetic approaches. Here we report a rare case of a patient with SDS who was diagnosed with AML at 5 years of age and survived. Intermittent neutropenia preceded the AML diagnostic but serial bone marrow monitoring according to the standard of care revealed no cytogenetic anomalies nor signs of clonal hematopoiesis. Using next generation sequencing approaches to find cytogenetically cryptic pathogenic mutations, we identified the cancer hotspot mutation c.394C>T/p.Arg132Cys in IDH1 with high variant allelic frequency in bone marrow cells, suggesting clonal expansion of a major leukemic clone karyotypically normal, in the SDS-associated AML. The mutation was somatic and likely occurred at the leukemic transformation stage, as it was not detected in a matched normal tissue nor in bone marrow smear prior to AML diagnosis. Gain-of-function mutations in IDH1, such as c.394C>T/p.Arg132Cys, create a neo-activity of isocitrate dehydrogenase 1 converting α-ketoglutarate into the oncometabolite D-2-hydroxyglutarate, inhibiting α-ketoglutarate-dependent enzymes, such as histone and DNA demethylases. Overall, our results suggest that along with previously described abnormalities such as TP53 mutations or monosomy7, 7q-, which are all absent in this patient, additional mechanisms including IDH1 mutations drive SDS-related AML and are likely associated with variable outcomes. Sensitive techniques complementary to standard cytogenetics, such as unbiased or targeted panel-based next generation sequencing approaches, warrant testing for monitoring of myelodysplasia, clonal hematopoiesis, and leukemia in the context SDS. Such analyses would also assist treatment decisions and allow to gain insight into the disease biology.

6.
J Pediatr Hematol Oncol ; 41(6): e405-e408, 2019 08.
Article in English | MEDLINE | ID: mdl-30299350

ABSTRACT

Gray zone lymphoma is an aggressive disease for which appropriate management is still debated. We report a 15-year-old girl with a cervical mass, an enlarged ipsilateral tonsil, and anemia. Both sites showed hypermetabolism on F18-FG positron emission tomography/CT. Surgical resection was diagnostic of Epstein-Barr virus-negative gray zone lymphoma cervical and tonsillar involvement. No abnormality was found in cytogenetic analysis on tumor cells. However, exome sequencing in peripheral blood DNA revealed a germline mutation in TP53. Complete response was achieved after surgery and 6 cycles of rituximab with dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin regimen.


Subject(s)
Germ-Line Mutation , Lymphoma, B-Cell/pathology , Neck/pathology , Palatine Tonsil/pathology , Tumor Suppressor Protein p53/genetics , Adolescent , Combined Modality Therapy , Female , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/therapy , Prognosis
7.
Genes Chromosomes Cancer ; 57(6): 311-319, 2018 06.
Article in English | MEDLINE | ID: mdl-29427526

ABSTRACT

The advent of large scale genomic sequencing technologies significantly improved the molecular classification of acute megakaryoblastic leukaemia (AMKL). AMKL represents a subset (∼10%) of high fatality pediatric acute myeloid leukemia (AML). Recurrent and mutually exclusive chimeric gene fusions associated with pediatric AMKL are found in 60%-70% of cases and include RBM15-MKL1, CBFA2T3-GLIS2, NUP98-KDM5A and MLL rearrangements. In addition, another 4% of AMKL harbor NUP98 rearrangements (NUP98r), with yet undetermined fusion partners. We report a novel NUP98-BPTF fusion in an infant presenting with primary refractory AMKL. In this NUP98r, the C-terminal chromatin recognition modules of BPTF, a core subunit of the NURF (nucleosome remodeling factor) ATP-dependent chromatin-remodeling complex, are fused to the N-terminal moiety of NUP98, creating an in frame NUP98-BPTF fusion, with structural homology to NUP98-KDM5A. The leukemic blasts expressed two NUP98-BPTF splicing variants, containing one or two tandemly spaced PHD chromatin reader domains. Our study also identified an unreported wild type BPTF splicing variant encoding for 2 PHD domains, detected both in normal cord blood CD34+ cells and in leukemic blasts, as with the fly BPTF homolog, Nurf301. Disease course was marked by rapid progression and primary chemoresistance, with ultimately significant tumor burden reduction following treatment with a clofarabine containing regimen. In sum, we report 2 novel NUP98-BPTF fusion isoforms that contribute to refine the NUP98r subgroup of pediatric AMKL. Multicenter clinical trials are critically required to determine the frequency of this fusion in AMKL patients and explore innovative treatment strategies for a disease still plagued with poor outcomes.


Subject(s)
Antigens, Nuclear/genetics , Leukemia, Megakaryoblastic, Acute/genetics , Nerve Tissue Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Transcription Factors/genetics , Disease Progression , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Humans , Infant , Karyotyping , Leukemia, Megakaryoblastic, Acute/drug therapy , Male , RNA Splicing
SELECTION OF CITATIONS
SEARCH DETAIL
...