Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(16): E103-E108, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706899

ABSTRACT

A novel fiber laser structure, to the best of our knowledge, based on an erbium-doped fiber ring (EDFR) and a silica microbottle resonator (MBR) is proposed and investigated experimentally. Two fiber laser samples based on MBRs with different geometries and diameters of 200 and 150 µm are fabricated, and their performance is studied experimentally. Periodic whispering gallery mode spectra of the MBRs are dependent on the position of the fiber taper used for coupling of light into the MBR, and this dependence is explored to achieve lasing at different wavelengths by moving the light coupling point along the axis of the microbottle incorporated into the proposed EDFR-MBR system. The influences of the pump laser power and light polarization on the system performance and laser stability are also investigated. Single-mode lasing with a maximum optical signal-to-noise ratio of 32 dB is demonstrated.

2.
Sensors (Basel) ; 22(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36366010

ABSTRACT

A novel micron-range displacement sensor based on a whispering-gallery mode (WGM) microcapillary resonator filled with a nematic liquid crystal (LC) and a magnetic nanoparticle- coated fiber half-taper is proposed and experimentally demonstrated. In the proposed device, the tip of a fiber half-taper coated with a thin layer of magnetic nanoparticles (MNPs) moves inside the LC-filled microcapillary resonator along its axis. The input end of the fiber half-taper is connected to a pump laser source and due to the thermo-optic effect within the MNPs, the fiber tip acts as point heat source increasing the temperature of the LC material in its vicinity. An increase in the LC temperature leads to a decrease in its effective refractive index, which in turn causes spectral shift of the WGM resonances monitored in the transmission spectrum of the coupling fiber. The spectral shift of the WGMs is proportional to the displacement of the MNP-coated tip with respect to the microcapillary's light coupling point. The sensor's operation is simulated considering heat transfer in the microcapillary filled with a LC material having a negative thermo-optic coefficient. The simulations are in a good agreement with the WGMs spectral shift observed experimentally. A sensitivity to displacement of 15.44 pm/µm and a response time of 260 ms were demonstrated for the proposed sensor. The device also shows good reversibility and repeatability of response. The proposed micro-displacement sensor has potential applications in micro-manufacturing, precision measurement and medical instruments.

3.
Opt Express ; 29(15): 23569-23581, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614621

ABSTRACT

A novel tunable whispering gallery modes (WGMs) resonator based on a nematic liquid crystal (LC)-filled capillary and magnetic nanoparticles (MNPs)-coated tapered fiber has been proposed and experimentally demonstrated. Thermo-optic tuning of the WGM resonances has been demonstrated by varying optical pump laser power injected into the MNPs-coated fiber half-taper inside the capillary. The tuning mechanism relies on the change of the effective refractive index (RI) of the nematic LC, caused by the photo-thermal effect of MNPs on the surface of the fiber half-taper inducing a temperature change inside the capillary. Tuning of the WGM resonances with sensitivities of 101.5 ± 3.5 pm/mW and 146.5 ± 3.5 pm/mW and tuning ranges of 1.96 nm and 3.28 nm respectively for the two types of liquid crystals (MLC-7012, MDA-05-2782) has been demonstrated. In addition, the relationship between the optical power of the pump laser and the local temperature of the nematic LC was investigated and the heating rate is estimated as 1.49 °C/mW. The proposed thermo-optic tuning scheme has many potential applications in tunable photonic devices and sensors.

4.
Nanomaterials (Basel) ; 9(2)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791417

ABSTRACT

Gold films are widely used for different applications. We present the results of third- and high-order nonlinear optical studies of the thin films fabricated from Au nanoparticle solutions by spin-coating methods. These nanoparticles were synthesized by laser ablation of bulk gold in pure water using 200 ps, 800 nm pulses. The highest values of the nonlinear absorption coefficient (9 × 10-6 cm W-1), nonlinear refractive index (3 × 10-11 cm² W-1), and saturation intensity (1.3 × 1010 W cm-2) were achieved using 35 fs, 400 nm pulses. We also determined the relaxation time constants for transient absorption (220 fs and 1.6 ps) at 400 nm. The high-order harmonic generation was studied during propagation of 35 fs, 800 nm pulses through the plasma during the ablation of gold nanoparticle film and bulk gold. The highest harmonic cutoff (29th order) was observed in the plasma containing gold nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...