Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(20): 9634-9640, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37812066

ABSTRACT

The strongly correlated charge density wave (CDW) phase of 1T-TiSe2 is of interest to verify the claims of a chiral order parameter. Characterization of the symmetries of 1T-TiSe2 is critical to understand the origin of its intriguing properties. Here we use very low-power, continuous wave laser excitation to probe the symmetries of 1T-TiSe2 by using the circular photogalvanic effect. We observe that the ground state of the CDW phase (D3d) is achiral. However, laser excitation above a threshold intensity transforms 1T-TiSe2 into a nonequilibrium chiral phase (C3), which changes the electronic correlations in the material. The inherent sensitivity of the photogalvanic technique to structural symmetries provides evidence of the different optically driven phase of 1T-TiSe2, which allows us to assign symmetry groups to these states. Our work demonstrates that optically induced phase change can occur at extremely low optical intensities in strongly correlated materials, providing a pathway to engineer new phases using light.

2.
J Phys Condens Matter ; 34(39)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35817027

ABSTRACT

The pyrochlore iridates (Eu1-xBix)2Ir2O7(0⩽x⩽1) undergo an anomalous negative lattice expansion for small Bi-doping (x⩽0.035) (region I) and a normal lattice expansion forx⩾0.1(region II); this is accompanied by a transition from an insulating (and magnetically ordered) to a metallic (and with no magnetic ordering) ground state. Here, we investigate (Eu1-xBix)2Ir2O7(0⩽x⩽1) using hard x-ray photoemission spectroscopy and x-ray absorption fine structure (XAFS) spectroscopy. By analyzing the Eu-L3, Ir-L3and Bi-L2&L3edges x-ray absorption near edge structure spectra and Eu-3dcore-level XPS spectra, we show that the metal cations retain their nominal valence, namely, Ir4+, Bi3+and Eu3+, respectively, throughout the series. The Ir-4fand Bi-4fcore-level XPS spectra consist of screened and unscreened doublets. The unscreened component is dominant In the insulating range (x⩽0.035), and in the metallic region (x⩾0.1), the screened component dominates the spectra. The Eu-3dcore-level spectra remain invariant under Bi doping. The extended XAFS data show that the coordination around the Ir remains well preserved throughout the series. The evolution of the valence band spectra near the Fermi energy with increasing Bi doping indicates the presence of strong Ir(5d)-Bi(6p) hybridization which drives the metal-to-insulator transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...