Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 856, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287003

ABSTRACT

Bilayer graphene encapsulated in tungsten diselenide can host a weak topological phase with pairs of helical edge states. The electrical tunability of this phase makes it an ideal platform to investigate unique topological effects at zero magnetic field, such as topological superconductivity. Here we couple the helical edges of such a heterostructure to a superconductor. The inversion of the bulk gap accompanied by helical states near zero displacement field leads to the suppression of the critical current in a Josephson geometry. Using superconducting quantum interferometry we observe an even-odd effect in the Fraunhofer interference pattern within the inverted gap phase. We show theoretically that this effect is a direct consequence of the emergence of helical modes that connect the two edges of the sample. The absence of such an effect at high displacement field, as well as in bare bilayer graphene junctions, supports this interpretation and demonstrates the topological nature of the inverted gap.

2.
Nano Lett ; 23(20): 9508-9514, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37844301

ABSTRACT

Bilayer graphene (BLG) was recently shown to host a band-inverted phase with unconventional topology emerging from the Ising-type spin-orbit interaction (SOI) induced by the proximity of transition metal dichalcogenides with large intrinsic SOI. Here, we report the stabilization of this band-inverted phase in BLG symmetrically encapsulated in tungsten diselenide (WSe2) via hydrostatic pressure. Our observations from low temperature transport measurements are consistent with a single particle model with induced Ising SOI of opposite sign on the two graphene layers. To confirm the strengthening of the inverted phase, we present thermal activation measurements and show that the SOI-induced band gap increases by more than 100% due to the applied pressure. Finally, the investigation of Landau level spectra reveals the dependence of the level-crossings on the applied magnetic field, which further confirms the enhancement of SOI with pressure.

3.
Nano Lett ; 22(21): 8601-8607, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36279222

ABSTRACT

Tunneling spectroscopy measurements are often used to probe the energy spectrum of Andreev bound states (ABSs) in semiconductor-superconductor hybrids. Recently, this spectroscopy technique has been incorporated into planar Josephson junctions (JJs) formed in two-dimensional electron gases, a potential platform to engineer phase-controlled topological superconductivity. Here, we perform ABS spectroscopy at the two ends of planar JJs and study the effects of the magnetic vector potential on the ABS spectrum. We show that the local superconducting phase difference arising from the vector potential is equal in magnitude and opposite in sign at the two ends, in agreement with a model that assumes localized ABSs near the tunnel barriers. Complemented with microscopic simulations, our experiments demonstrate that the local phase difference can be used to estimate the relative position of localized ABSs separated by a few hundred nanometers.

4.
Adv Mater ; 32(29): e2000216, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32510654

ABSTRACT

In polar oxide interfaces phenomena such as superconductivity, magnetism, 1D conductivity, and quantum Hall states can emerge at the polar discontinuity. Combining controllable ferroelectricity at such interfaces can affect the superconducting properties and sheds light on the mutual effects between the polar oxide and the ferroelectric oxide. Here, the interface between the polar oxide LaAlO3 and the ferroelectric Ca-doped SrTiO3 is studied by means of electrical transport combined with local imaging of the current flow with the use of scanning a superconducting quantum interference device (SQUID). Anomalous behavior of the interface resistivity is observed at low temperatures. The scanning SQUID maps of the current flow suggest that this behavior originates from an intrinsic bias induced by the polar LaAlO3 layer. Such intrinsic bias combined with ferroelectricity can constrain the possible structural domain tiling near the interface. The use of this intrinsic bias is recommended as a method of controlling and tuning the initial state of ferroelectric materials by the design of the polar structure. The hysteretic dependence of the normal and the superconducting state properties on gate voltage can be utilized in multifaceted controllable memory devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...