Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963114

ABSTRACT

INTRODUCTION: Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 µg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS: This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS: Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION: Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.

2.
Pharm Dev Technol ; 28(1): 78-94, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36564887

ABSTRACT

Oral mucositis is a serious issue in patients receiving oncological therapies. Mucosal protectants considered to be one of the preferred choices used in the management of mucositis. However, the protective efficacy of currently available mucosal protectants has been significantly compromised due to poor retention, lack of lubrication, poor biodegradability, and inability to manage secondary complications. Chitosan is a promising material for mucosal applications due to its beneficial biomedical properties. Chitosan is also anti-inflammatory, anti-microbial, and capable of scavenging free radicals, makes it a good candidate for the treatment of oral mucositis. Additionally, chitosan's amino polysaccharide skeleton permits a number of chemical alterations with better bioactive performance. This article provides a summary of key biological properties of chitosan and its derivatives that are useful for treating oral mucositis. Current literature evidence shows that Chitosan has superior mucosal protective properties when utilised alone or as delivery systems for co-encapsulated drugs.


Subject(s)
Chitosan , Neoplasms , Stomatitis , Humans , Chitosan/chemistry , Biocompatible Materials , Stomatitis/drug therapy , Stomatitis/etiology , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...