Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Microsc ; 262(2): 178-82, 2016 May.
Article in English | MEDLINE | ID: mdl-26748639

ABSTRACT

The atomic scale analysis of a ZnTe/CdSe superlattice grown by molecular beam epitaxy is reported using atom probe tomography and strain measurements from high-resolution scanning transmission electron microscopy images. CdTe interfaces were grown by atomic layer epitaxy to prevent the spontaneous formation of ZnSe bonds. Both interfaces between ZnTe and CdSe are composed of alloyed layers of ZnSe. Pure CdTe interfaces are not observed and Zn atoms are also visible in the CdSe layers. This information is critical to design superlattices with the expected optoelectronic properties.

2.
Ultramicroscopy ; 160: 64-73, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26452193

ABSTRACT

A new method to retrieve the local lattice parameters and rotations in a crystal from off-axis convergent beam electron diffraction (CBED) patterns is presented and validated using Bloch wave dynamical simulations. The originality of the method is to use both the diffracted and transmitted beams and to use kinematical approximations in the fitting algorithm. The study is based on the deformation gradient tensor F which includes rotation and strain. Working on simulated images it is shown that (i) from a single direction of observation, seven parameters out of the nine parameters of F can be determined with an accuracy of 3 × 10(-4) for the normal strain parameters εxx, εyy, and εzz, (ii) the unit cell volume can only be retrieved if the diffracted and transmitted beams are both included in the fitting and (iii) all the nine parameters of F can be determined by combining two directions of observation separated by about 20°.

3.
IUCrJ ; 2(Pt 1): 7-8, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25610622

ABSTRACT

Precession electron diffraction has solved a long-standing challenge in electron diffraction. Further progress promises a general technique for structure determination of difficult crystals.

4.
Micron ; 62: 52-65, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24811992

ABSTRACT

Dark-field electron holography (DFEH) is a powerful transmission electron microscopy technique for mapping strain with nanometer resolution and high precision. However the technique can be difficult to set up if some practical steps are not respected. In this article, several measurements were performed on thin Si(1-x)Gex layers using (004) DFEH in Lorentz mode. Different practical aspects are discussed such as sample preparation, reconstruction of the holograms and interpretation of the strain maps in terms of sensitivity and accuracy. It was shown that the measurements are not significantly dependent on the preparation tool. Good results can be obtained using both FIB and mechanical polishing. Usually the most important aspect is a precise control of the thickness of the sample. A problem when reconstructing (004) dark-field holograms is the relatively high phase gradient that characterises the strained regions. It can be difficult to perform reconstructions with high sensitivity in both strained and unstrained regions. Here we introduce simple methods to minimise the noise in the different regions using a specific mask shape in Fourier space or by combining several reconstructions. As a test, DFEH was applied to the characterization of eight Si(1-x)Gex samples with different Ge concentrations. The sensitivity of the strain measured in the layers varies between 0.08% and 0.03% for spatial resolutions of 3.5-7 nm. The results were also compared to finite element mechanical simulations. A good accuracy of ±0.1% between experiment and simulation was obtained for strains up to 1.5% and ±0.25% for strains up to 2.5%.

5.
Ultramicroscopy ; 131: 10-23, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23673283

ABSTRACT

Convergent beam electron diffraction (CBED), nano-beam electron diffraction (NBED or NBD), high resolution imaging (HRTEM and HRSTEM) and dark field electron holography (DFEH or HoloDark) are five TEM based techniques able to quantitatively measure strain at the nanometer scale. In order to demonstrate the advantages and disadvantages of each technique, two samples composed of epitaxial silicon-germanium layers embedded in a silicon matrix have been investigated. The five techniques are then compared in terms of strain precision and accuracy, spatial resolution, field of view, mapping abilities and ease of performance and analysis.

6.
Nano Lett ; 12(11): 5691-6, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23030278

ABSTRACT

GaN nanowires (NWs) with an AlN insertion were studied by correlated optoelectronic and aberration-corrected scanning transmission electron microscopy (STEM) characterization on the same single NW. Using aberration-corrected annular bright field and high angle annular dark field STEM, we identify the NW growth axis to be the N-polar [000-1] direction. The electrical transport characteristics of the NWs are explained by the polarization-induced asymmetric potential profile and by the presence of an AlN/GaN shell around the GaN base of the wire. The AlN insertion blocks the electron flow through the GaN core, confining the current to the radial GaN outer shell, close to the NW sidewalls, which increases the sensitivity of the photocurrent to the environment and in particular to the presence of oxygen. The desorption of oxygen adatoms in vacuum leads to a reduction of the nonradiative surface trap density, increasing both dark current and photocurrent.

7.
Nanotechnology ; 23(2): 025701, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22166492

ABSTRACT

Recent publications have reported the presence of hexagonal phases in Si nanowires. Most of these reports were based on 'odd' diffraction patterns and HRTEM images­'odd' means that these images and diffraction patterns could not be obtained on perfect silicon crystals in the classical diamond cubic structure. We analyze the origin of these 'odd' patterns and images by studying the case of various Si nanowires grown using either Ni or Au as catalysts in combination with P or Al doping. Two models could explain the experimental results: (i) the presence of a hexagonal phase or (ii) the presence of defects that we call 'hidden' defects because they cannot be directly observed in most images. We show that in many cases one direction of observation is not sufficient to distinguish between the two models. Several directions of observations have to be used. Secondly, conventional TEM images, i.e. bright-field two-beam and dark-field images, are of great value in the identification of 'hidden' defects. In addition, slices of nanowires perpendicular to the growth axis can be very useful. In the studied nanowires no hexagonal phase with long range order is found and the 'odd' images and diffraction patterns are mostly due to planar defects causing superposition of different crystal grains. Finally, we show that in Raman experiments the defect-rich NWs can give rise to a Raman peak shifted to 504­511 cm⁻¹ with respect to the Si bulk peak at 520 cm⁻¹, indicating that Raman cannot be used to identify a hexagonal phase.

8.
Ultramicroscopy ; 111(3): 227-38, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21333860

ABSTRACT

Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity.

9.
Nanotechnology ; 20(35): 355704, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19671977

ABSTRACT

Photoluminescence (PL) and time-resolved PL experiments as a function of the elaboration process are performed on Er-doped silicon-rich silicon oxide (SRO:Er) thin films grown under NH(3) atmosphere. These PL measurements of the Er(3+) emission at 1.54 microm under non-resonant pumping with the Er f-f transitions are obtained for different Er(3+) concentrations, ranging from 0.05 to 1.4 at.%, and various post-growth annealing temperatures of the layers. High resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) analysis show a high density of Si nanostructures composed of amorphous and crystalline nanoclusters varying from 2.7 x 10(18) to 10(18) cm(-3) as a function of the post-growth annealing temperature. Measurements of PL lifetime and effective Er excitation cross section for all the samples under non-resonant optical excitation with the Er(3+) atomic energy levels show that the number of Er(3+) ions sensitized by the silicon-rich matrix decreases as the annealing temperature is increased from 500 to 1050 degrees C. The origin of this effect is attributed to the reduction of the density of sensitizers for Er ions in the SRO matrix when the annealing temperature increases. Finally, extended x-ray absorption fine-structure spectroscopy (EXAFS) shows a strong correlation between the number of emitters and the mean local order around the erbium ions.

10.
Micron ; 40(8): 886-93, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19589685

ABSTRACT

Convergent Beam Electron Diffraction (CBED) experiments and simulations associated with Finite Element calculations were performed in order to measure strain and stress in a complex device such as periodic MOS transistors with a spatial resolution of about 2 nm and a sensitivity that could reach 50 MPa. A lamella of a thickness of about 475 nm was extracted from the wafer with the transistors by Focus Ion Beam (FIB) and was observed in cross-section in a Transmission Electron Microscope (TEM). When approaching the transistors, the HOLZ lines of the CBED patterns acquired in the silicon substrate, become broader and broader. This HOLZ line broadening, which is due to the stress relaxation in the thin foil, was used to determine quantitatively the strain and stress in the lamella and then in the bulk device. We showed that this procedure could be applied to a complex device. Two parameters, the intrinsic material strains--or equivalently the intrinsic material stresses--in the nickel silicide (NiSi) and nitride (Si(3)N(4)) layers on the top of the transistors gate, were successfully fitted by trial and error, in the procedure.

11.
Ultramicroscopy ; 106(10): 951-9, 2006.
Article in English | MEDLINE | ID: mdl-16750884

ABSTRACT

A SiGe layer epitaxially grown on a silicon substrate is experimentally studied by convergent beam electron diffraction (CBED) experiments and used as a test sample to analyse the higher-order Laue zones (HOLZ) line splitting. The influence of surface strain relaxation on the broadening of HOLZ lines is confirmed. The quantitative fit of the observed HOLZ line profiles is successfully achieved using a formalism particularly well-adapted to the case of a z-dependent crystal potential (z being the zone axis). This formalism, based on a time-dependent perturbation theory approach, proves to be much more efficient than a classical Howie-Whelan approach, to reproduce the complex HOLZ lines profile in this heavily strained test sample.

12.
Ultramicroscopy ; 106(1): 1-17, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16054755

ABSTRACT

The Geometrical phase analysis, which is a very efficient method to measure deformation from High resolution transmission electron microscopy images, is studied from a theoretical point of view. We point out that the basic property of this method is its ability to measure local reciprocal lattice parameters with a high level of accuracy. We attempt to provide some insights into (a) different formula used in the geometrical phase analysis such as the well-known relation between phase and displacement: Pg(r)=-2pi g.u(r), (b) the two different definitions of strain, each of which corresponding to a different lattice reference and (c) the meaning of a continuous displacement in a dot-like high resolution image. The case of one-dimensional analysis is also presented. Finally, we show that the method is able to give the position of the dot that is nearest to a given pixel in the image.

SELECTION OF CITATIONS
SEARCH DETAIL
...