Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(6): 765-777, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37042205

ABSTRACT

MET, the cell-surface receptor for the hepatocyte growth factor/scatter factor, which is widely overexpressed in various solid cancer types, is an attractive target for the development of antibody-based therapeutics. BYON3521 is a novel site-specifically conjugated duocarmycin-based antibody-drug conjugate (ADC), comprising a humanized cysteine-engineered IgG1 monoclonal antibody with low pmol/L binding affinity towards both human and cynomolgus MET. In vitro studies showed that BYON3521 internalizes efficiently upon MET binding and induces both target- and bystander-mediated cell killing. BYON3521 showed good potency and full efficacy in MET-amplified and high MET-expressing cancer cell lines; in moderate and low MET-expressing cancer cell lines good potencies and partial efficacy were observed. In mouse xenograft models, BYON3521 showed significant antitumor activity upon single-dose administration in multiple non-MET-amplified tumor types with low, moderate, and high MET expression, including complete tumor remissions in models with moderate MET expression. In the repeat-dose Good Laboratory Practice (GLP) safety assessment in cynomolgus monkeys, BYON3521 was well tolerated and based on the observed toxicities and their reversibility, the highest non-severely toxic dose was set at 15 mg/kg. A human pharmacokinetics (PK) model was derived from the PK data from the cynomolgus safety assessments, and the minimal efficacious dose in humans is estimated to be in the range of 3 to 4 mg/kg. In all, our nonclinical data suggests that BYON3521 is a safe ADC with potential for clinical benefit in patients. A first-in-human dose-escalation study is currently ongoing to determine the maximum tolerated dose and recommended dose for expansion (NCT05323045).


Subject(s)
Antibodies, Monoclonal , Immunoconjugates , Animals , Humans , Mice , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Immunoglobulin G , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 17(11): 2389-2398, 2018 11.
Article in English | MEDLINE | ID: mdl-30093567

ABSTRACT

Carboxylesterase 1c (CES1c) is responsible for linker-drug instability and poor pharmacokinetics (PK) of several antibody-drug conjugates (ADC) in mice, but not in monkeys or humans. Preclinical development of these ADCs could be improved if the PK in mice would more closely resemble that of humans and is not affected by an enzyme that is irrelevant for humans. SYD985, a HER2-targeting ADC based on trastuzumab and linker-drug vc-seco-DUBA, is also sensitive to CES1c. In the present studies, we first focused on the interaction between CES1c and SYD985 by size- exclusion chromatography, Western blotting, and LC/MS-MS analysis, using recombinant CES1c and plasma samples. Intriguingly, CES1c activity not only results in release of the active toxin DUBA but also in formation of a covalent bond between CES1c and the linker of vc-seco-DUBA. Mass spectrometric studies enabled identification of the CES1c cleavage site on the linker-drug and the structure of the CES1c adduct. To assess the in vivo impact, CES1c-/- SCID mice were generated that showed stable PK for SYD985, comparable to that in monkeys and humans. Patient-derived xenograft (PDX) studies in these mice showed enhanced efficacy compared with PDX studies in CES1c+/+ mice and provided a more accurate prediction of clinical efficacy of SYD985, hence delivering better quality data. It seems reasonable to assume that CES1c-/- SCID mice can increase quality in ADC development much broader for all ADCs that carry linker-drugs susceptible to CES1c, without the need of chemically modifying the linker-drug to specifically increase PK in mice. Mol Cancer Ther; 17(11); 2389-98. ©2018 AACR.


Subject(s)
Carboxylesterase/deficiency , Immunoconjugates/pharmacology , Immunoconjugates/pharmacokinetics , Animals , Carboxylesterase/metabolism , Catalytic Domain , Cell Line, Tumor , Female , Humans , Immunoconjugates/chemistry , Mice, Knockout , Mice, SCID , Peptides/chemistry , Rats, Wistar , Trastuzumab/chemistry , Treatment Outcome
3.
Mol Cancer Ther ; 14(3): 692-703, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25589493

ABSTRACT

SYD985 is a HER2-targeting antibody-drug conjugate (ADC) based on trastuzumab and vc-seco-DUBA, a cleavable linker-duocarmycin payload. To evaluate the therapeutic potential of this new ADC, mechanistic in vitro studies and in vivo patient-derived xenograft (PDX) studies were conducted to compare SYD985 head-to-head with T-DM1 (Kadcyla), another trastuzumab-based ADC. SYD985 and T-DM1 had similar binding affinities to HER2 and showed similar internalization. In vitro cytotoxicity assays showed similar potencies and efficacies in HER2 3+ cell lines, but in cell lines with low HER2 expression, SYD985 was 3- to 50-fold more potent than T-DM1. In contrast with T-DM1, SYD985 efficiently induced bystander killing in vitro in HER2-negative (HER2 0) cells mixed with HER2 3+, 2+, or 1+ cell lines. At pH conditions relevant for tumors, cathepsin-B cleavage studies showed efficient release of the active toxin by SYD985 but not by T-DM1. These in vitro data suggest that SYD985 might be a more potent ADC in HER2-expressing tumors in vivo, especially in low HER2-expressing and/or in heterogeneous tumors. In line with this, in vivo antitumor studies in breast cancer PDX models showed that SYD985 is very active in HER2 3+, 2+, and 1+ models, whereas T-DM1 only showed significant antitumor activity in HER2 3+ breast cancer PDX models. These properties of SYD985 may enable expansion of the target population to patients who have low HER2-expressing breast cancer, a patient population with still unmet high medical need.


Subject(s)
Antibodies, Monoclonal/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Indoles/pharmacology , Receptor, ErbB-2/genetics , Animals , Cell Line, Tumor , Duocarmycins , Female , Humans , Mice , Mice, Nude , Pyrrolidinones/pharmacology , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays/methods
4.
J Immunol ; 193(5): 2147-56, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25086173

ABSTRACT

We have previously identified eight novel autoantibody targets in the cerebrospinal fluid of multiple sclerosis (MS) patients, including sperm-associated Ag 16 (SPAG16). In the current study, we further investigated the autoantibody response against SPAG16-a protein with unknown function in the CNS-and its expression in MS pathology. Using isoelectric focusing, we detected SPAG16-specific oligoclonal bands in the cerebrospinal fluid of 5 of 23 MS patients (22%). Analysis of the anti-SPAG16 Ab reactivity in the plasma of a total of 531 donors using ELISA demonstrated significantly elevated anti-SPAG16 Ab levels (p = 0.002) in 32 of 153 MS patients (21%) compared with all other control groups with 95% specificity for the disease. To investigate the pathologic relevance of anti-SPAG16 Abs in vivo, anti-SPAG16 Abs were injected in mice with experimental autoimmune encephalomyelitis, resulting in a significant disease exacerbation. Finally, we demonstrated a consistent upregulation of SPAG16 in MS brain and experimental autoimmune encephalomyelitis spinal cord lesions, more specifically in reactive astrocytes. We conclude that SPAG16 is a novel autoantibody target in a subgroup of MS patients and in combination with other diagnostic criteria, elevated levels of anti-SPAG16 Abs could be used as a biomarker for diagnosis. Furthermore, the pathologic relevance of anti-SPAG16 Abs was shown in vivo.


Subject(s)
Antibody Specificity , Autoantibodies/immunology , Microtubule-Associated Proteins/immunology , Multiple Sclerosis/immunology , Adult , Animals , Autoantibodies/blood , Biomarkers/blood , Brain/immunology , Brain/metabolism , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Isoelectric Focusing , Male , Mice , Microtubule-Associated Proteins/blood , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Up-Regulation/immunology
5.
J Neurochem ; 126(4): 483-92, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23745754

ABSTRACT

Recently, we identified the mimotope UH-CIS6 as a novel candidate antibody target for clinically isolated syndrome (CIS) and relapsing-remitting (RR) multiple sclerosis (MS). The purpose of this study was to further validate UH-CIS6 as an antibody target for CIS and MS and to identify the in vivo antibody target of UH-CIS6. First, a UH-CIS6 peptide ELISA was optimized. Next, we investigated the antibody response toward UH-CIS6 in cerebrospinal fluid (CSF) from patients with CIS (n = 20), MS (n = 43) and other neurological diseases (n = 42). Immunoprecipitation of anti-UH-CIS6 antibodies on a normal human brain lysate was performed to identify the in vivo antibody target of UH-CIS6. The cellular expression of an in vivo candidate target was investigated by immunohistochemistry using MS brain tissue sections. Antibody reactivity toward UH-CIS6 was detected in a significantly increased proportion of CSF samples from CIS and RR-MS patients as compared with neurological controls (p = 0.046). We identified and confirmed coronin-1a as the in vivo antibody target for UH-CIS6. Furthermore, coronin-1a was expressed by T cells and macrophages in an active MS lesion. Together, these results demonstrate that coronin-1a is a novel antibody target for CIS and MS.


Subject(s)
Brain/immunology , Demyelinating Diseases/immunology , Microfilament Proteins/immunology , Multiple Sclerosis, Chronic Progressive/immunology , Adult , Aged , Autoantibodies/cerebrospinal fluid , Autoantibodies/immunology , Autoantibodies/isolation & purification , Binding, Competitive/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunohistochemistry , Macrophages/immunology , Macrophages/metabolism , Male , Microfilament Proteins/metabolism , Middle Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
6.
J Neurochem ; 123(4): 568-77, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22958230

ABSTRACT

Limited information is available on the identity of antigens targeted by antibodies present in cerebrospinal fluid (CSF) of patients with clinically isolated syndrome (CIS). The aim of this study was to identify novel antigens for CIS and investigate their prognostic potential to predict conversion to multiple sclerosis (MS). We applied serological antigen selection (SAS) to identify antigens interacting with antibodies present in the pooled CSF from four CIS patients, who developed MS. Antibody reactivity towards CIS antigens identified by SAS was tested in CSF and serum from patients with CIS (n = 123/n = 108), MS (n = 65/n = 44), and other (inflammatory) neurological diseases (n = 75/n = 38) as well as in healthy control sera (n = 44). Using SAS, a panel of six novel CIS candidate antigens was identified. CSF antibody reactivity was detected in both CIS and relapsing-remitting (RR) MS. Serum reactivity was significantly increased in CIS and RR-MS as compared with controls (p = 0.03). For two antigens, the frequency of antibody-positive patients was higher in CIS patients who converted to MS as compared with CIS patients without conversion. We identified novel CIS antigens to which antibody reactivity was primarily detected in CIS and RR-MS as compared to controls. Possible prognostic potential could be demonstrated for two antigens.


Subject(s)
Antigens/immunology , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Demyelinating Diseases/blood , Demyelinating Diseases/cerebrospinal fluid , Adolescent , Adult , Antigen-Antibody Reactions , Disability Evaluation , Enzyme-Linked Immunosorbent Assay , Female , Host Cell Factor C1/immunology , Humans , Male , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Myelin Proteins/immunology , Peptide Fragments/immunology , Peptide Fragments/isolation & purification , Predictive Value of Tests , Serologic Tests
7.
Audiol Neurootol ; 16(2): 93-105, 2011.
Article in English | MEDLINE | ID: mdl-21252500

ABSTRACT

In a Dutch family with autosomal recessive hearing loss, genome-wide single-nucleotide polymorphism analysis mapped the genetic defect to the DFNB7/11 locus. A novel homozygous A-to-G change in the TMC1 gene was detected near the splice donor site of intron 19 (c.1763+3A→G) segregating with the hearing loss in this family. One of the 6 transmembrane domains and the actual TMC channel domain are predicted to be absent in the mutant protein. The sensorineural hearing impairment in this DFNB7/11 family has a postlingual onset. Audiometric analysis initially showed a steeply downward-sloping threshold configuration. The progressive phenotype in this family resembles the phenotype previously described for families with dominant TMC1 mutations (DFNA36) rather than that of families with recessive TMC1 mutations (DFNB7/11) which invariably cause severe-to-profound prelingual hearing impairment.


Subject(s)
Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Membrane Proteins/genetics , Vestibular Diseases/genetics , Vestibular Diseases/physiopathology , Auditory Threshold , Base Sequence , Disease Progression , Female , Genotype , Hearing Loss, Sensorineural/diagnosis , Humans , Male , Membrane Proteins/chemistry , Molecular Sequence Data , Pedigree , Phenotype , Point Mutation , Polymorphism, Single Nucleotide , Protein Structure, Tertiary , RNA Splice Sites/genetics , Severity of Illness Index , Vestibular Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...