Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36626727

ABSTRACT

AIMS: To isolate and characterize non-rhizobial nodule-associated bacteria (NAB) from cowpea root-nodules regarding their performance of plant-growth-promoting mechanisms and their ability to enhance cowpea growth and symbiosis when co-inoculated with bradyrhizobia. METHODS AND RESULTS: Sixteen NAB were isolated, identified, and in vitro evaluated for plant growth promotion traits. The ability to promote cowpea growth was analyzed when co-inoculated with Bradyrhizobium pachyrhizi BR 3262 in sterile and non-sterile substrates. The 16S rRNA gene sequences analysis revealed that NAB belonged to the genera Chryseobacterium (4), Bacillus (3), Microbacterium (3), Agrobacterium (1), Escherichia (1), Delftia (1), Pelomonas (1), Sphingomonas (1), and Staphylococcus (1). All strains produced different amounts of auxin siderophores and formed biofilms. Twelve out of the 16 strains carried the nifH, a gene associated with nitrogen fixation. Co-inoculation of NAB (ESA 424 and ESA 29) with Bradyrhizobium pachyrhizi BR 3262 significantly promoted cowpea growth, especially after simultaneous inoculation with the three strains. CONCLUSIONS: NAB are efficient cowpea growth promoters and can improve the efficiency of the symbiosis between cowpea and the N2-fixing microsymbiont B. pachyrhizi BR 3262, mainly under a specific triple microbial association.


Subject(s)
Bradyrhizobium , Pilots , Rhizobium , Vigna , Humans , Vigna/genetics , Vigna/microbiology , Symbiosis/genetics , Rhizobium/genetics , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Bradyrhizobium/genetics , Nitrogen Fixation , Phylogeny
2.
Environ Microbiol ; 23(10): 6148-6162, 2021 10.
Article in English | MEDLINE | ID: mdl-33928743

ABSTRACT

Bradyrhizobium spp. are well known to mediate biological nitrogen fixation (BNF) as microsymbionts inhabiting nodules on leguminous plants. However, they may also contribute to plant growth via free-living N2 fixation (FLNF) in association with non-legumes. Notably, several Bradyrhizobium strains from sugarcane roots display FLNF activity. Among them, Bradyrhizobium sacchari is a legume symbiotic species, whereas strains AG48 and M12 are non-symbiotic. In the present study, a phylogenomic approach was applied to study peculiarities of these and other Bradyrhizobium strains with respect to N fixation (nif) gene content in order to reveal genetic features that enable FNLF in Bradyrhizobium spp. All FLNF strains carry an ancestral 'non-symbiotic' nif-gene cluster (NSC). B. sacchari also contains a second 'symbiotic' nif-gene cluster (SC), a characteristic observed in only three of 156 evaluated genomes. B. sacchari stood out and presented a high level of sequence divergence between individual nif-gene homologues and we discuss scenarios for the evolutionary origin of these clusters. The transcript level of NSC nifH gene increased during FLNF, when compared to symbiotic conditions. The data suggest that sugarcane roots harbor diverse Bradyrhizobium spp. that are genetically adapted to a dynamic environment where leguminous and non-leguminous host plants are alternately available.


Subject(s)
Bradyrhizobium , Fabaceae , Saccharum , Bradyrhizobium/genetics , DNA, Bacterial/genetics , Multigene Family , Nitrogen Fixation/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant , Symbiosis/genetics
3.
Microbiol Resour Announc ; 9(11)2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32165390

ABSTRACT

We report here the annotated draft genome sequence of the rhizobium strain BR 2003. This strain is able to establish symbiosis and to fix nitrogen with a broad range of leguminous species. The estimation of the average nucleotide identity confirmed the strain as a member of Bradyrhizobium elkanii.

4.
Mycorrhiza ; 30(2-3): 389-396, 2020 May.
Article in English | MEDLINE | ID: mdl-32215759

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) absorb and translocate nutrients from soil to their host plants by means of a wide network of extraradical mycelium (ERM). Here, we assessed whether nitrogen-fixing rhizobia can be transferred to the host legume Glycine max by ERM produced by Glomus formosanum isolate CNPAB020 colonizing the grass Urochloa decumbens. An H-bridge experimental system was developed to evaluate the migration of ERM and of the GFP-tagged Bradyrhizobium diazoefficiens USDA 110 strain across an air gap compartment. Mycorrhizal colonization, nodule formation in legumes, and occurrence of the GFP-tagged strain in root nodules were assessed by optical and confocal laser scanning microscopy. In the presence of non-mycorrhizal U. decumbens, legume roots were neither AMF-colonized nor nodulated. In contrast, G. formosanum ERM crossing the discontinuous compartment connected mycorrhizal U. decumbens and G. max roots, which showed 30-42% mycorrhizal colonization and 7-11 nodules per plant. Fluorescent B. diazoefficiens cells were detected in 94% of G. max root nodules. Our findings reveal that, besides its main activity in nutrient transfer, ERM produced by AMF may facilitate bacterial translocation and the simultaneous associations of plants with beneficial fungi and bacteria, representing an important structure, functional to the establishment of symbiotic relationships.


Subject(s)
Fabaceae , Mycorrhizae , Bacteria , Nitrogen , Plant Roots , Symbiosis
5.
Braz J Microbiol ; 50(3): 759-767, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31144269

ABSTRACT

The genus Bradyrhizobium harbors many endosymbionts of legumes, but recent research has shown their widespread presence in soils and in non-legumes, notably in roots of sugarcane. This study aimed to investigate the Bradyrhizobium sp. community density in the endosphere and the rhizosphere of two commercial sugarcane cultivars. Samples of the rhizosphere and root endosphere of two Brazilian sugarcane cultivars (RB867515 and IACSP95-5000) were collected, serially diluted, and inoculated on axenic cowpea (Vigna unguiculata) and the induction of nodules was evaluated. Based on the results, a density was estimated of at least 1.6 × 104 rhizobia g root-1 in rhizosphere samples and up to 105 rhizobia g root -1 in endosphere. BOX-PCR profiling of 93 Bradyrhizobium isolates revealed genetic variability, with some dominant (up to 18 representants) and less dominant genotypes. 16S rRNA and ITS sequence analyses confirmed nine phylotypes, six of which pertained to the B. elkanii clade and three to the B. japonicum clade. Five isolates were genetically similar to the recently described species B. sacchari. There was no effect of the factors "plant cultivar" and "root compartment" on Bradyrhizobium sp. community composition and the most abundant genotypes occurred both in rhizosphere and endosphere of both cultivars. Therefore, this study confirms the natural presence of diverse Bradyrhizobium spp. in sugarcane root systems (mainly the rhizosphere) and indicates that certain Bradyrhizobium phylotypes have a special affinity for sugarcane root colonization.


Subject(s)
Bradyrhizobium/isolation & purification , Root Nodules, Plant/microbiology , Saccharum/microbiology , Bradyrhizobium/classification , Bradyrhizobium/genetics , Brazil , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizosphere , Vigna/growth & development , Vigna/microbiology
6.
Arch Microbiol ; 199(9): 1251-1258, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28601967

ABSTRACT

Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280T), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303T. Average nucleotide identity (ANI) analyses confirmed that BR 10280T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303T, but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.


Subject(s)
Bradyrhizobium , Fabaceae/microbiology , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition/genetics , Bradyrhizobium/classification , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , Brazil , Cajanus/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial/genetics , Multilocus Sequence Typing , Nitrogen Fixation/physiology , Nucleic Acid Hybridization , Phaseolus/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Saccharum/microbiology , Sequence Analysis, DNA , Glycine max/microbiology , Symbiosis , Vigna/microbiology
7.
Braz. j. microbiol ; 47(4): 783-784, Oct.-Dec. 2016.
Article in English | LILACS, VETINDEX | ID: biblio-1469630

ABSTRACT

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Nitrogen Fixation , Vigna/microbiology , Plant Root Nodulation
8.
Int J Syst Evol Microbiol ; 66(8): 3078-3087, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27169861

ABSTRACT

The introduction of legumes and nitrogen-fixing bacteria in tropical areas under pasture is a key factor for improvement of soil fertility. However, there are still very few studies concerning the symbionts of tropical forage legumes. We performed a polyphasic study with three strains representing the genus Bradyrhizobium (BR 446T, BR 510 and BR 511) isolated from the tropical perennial forage legume of the genus Stylosanthes. On the basis of 16S rRNA gene sequences, the three strains showed highest similarity with B. huanghuaihaiense, and in the analysis of the intergenic transcribed spacer (ITS) they showed less than 93.4 % similarity to all described species of the genus Bradyrhizobium. Multilocus sequence analysis (MLSA) with three, four or five (dnaK, glnII, gyrB, recA and rpoB) housekeeping genes confirmed that the BR strains belong to a distinct clade, with <96.5 % nucleotide identity with other members of the genus Bradyrhizobium. Average nucleotide identity (ANI) of genome sequences between strain BR 446T and B.huanghuaihaiense was below the threshold for species circumscription (90.7 %). DNA-DNA hybridization resulted in ΔTm values over 6.7 °C with the most closely related species. Similarities among the BR strains and differences from other species were confirmed by rep-PCR analysis. Interestingly, the BR strains were grouped in the analysis of nifH and nodC genes, but showed higher similarity with B. iriomotense and B. manausense than with B.huanghuaihaiense, indicating a different evolutionary history for nitrogen-fixation genes. Morpho-physiological, genotypic and genomic data supported that these BR strains represent a novel species for which the name Bradyrhizobium stylosanthis sp. nov. is suggested. The type strain is BR 446T (=CNPSo 2823T=HAMBI 3668T=H-8T), isolated from Stylosanthes guianensis.


Subject(s)
Bradyrhizobium/classification , Fabaceae/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Fatty Acids/chemistry , Genes, Bacterial , Multilocus Sequence Typing , Nitrogen Fixation , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Arch Microbiol ; 197(2): 223-33, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25323530

ABSTRACT

TonB-dependent receptors in concert with the TonB-ExbB-ExbD protein complex are responsible for the uptake of iron and substances such as vitamin B12 in several bacterial species. In this study, Tn5 mutagenesis of the sugarcane endophytic bacterium Gluconacetobacter diazotrophicus led to the isolation of a mutant with a single Tn5-insertion in the promoter region of a tonB gene ortholog. This mutant, named Gdiaa31, displayed a reduced growth rate and a lack of response to iron availability when compared to the wild-type strain PAL5(T). Several efforts to generate null-mutants for the tonB gene by insertional mutagenesis were without success. RT-qPCR analysis demonstrated reduced transcription of tonB in Gdiaa31 when compared to PAL5(T). tonB transcription was inhibited in the presence of Fe(3+) ions both in PAL5(T) and in Gdiaa31. In comparison with PAL5(T), Gdiaa31 also demonstrated decreased nitrogenase activity and biofilm formation capability, two iron-requiring physiological characteristics of G. diazotrophicus. Additionally, Gdiaa31 accumulated higher siderophore levels in culture supernatant. The genetic complementation of the Gdiaa31 strain with a plasmid that carried the tonB gene including its putative promoter region (pP(tonB)) restored nitrogenase activity and siderophore accumulation phenotypes. These results indicate that the TonB complex has a role in iron/siderophore transport and may be essential in the physiology of G. diazotrophicus.


Subject(s)
Bacterial Proteins/genetics , Gluconacetobacter/genetics , Membrane Proteins/genetics , Plasmids/genetics , Promoter Regions, Genetic/genetics , Siderophores/genetics , Biological Transport/genetics , Culture Media/chemistry , Genetic Complementation Test , Gluconacetobacter/enzymology , Gluconacetobacter/metabolism , Iron/metabolism , Mutagenesis, Insertional , Mutation , Nitrogenase/genetics , Phenotype , Siderophores/analysis , Siderophores/metabolism
10.
Environ Microbiol Rep ; 6(4): 354-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24992534

ABSTRACT

Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Endophytes/classification , Endophytes/isolation & purification , Saccharum/microbiology , Bacterial Proteins/genetics , Bradyrhizobium/genetics , Bradyrhizobium/growth & development , Brazil , Cluster Analysis , Culture Media/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endophytes/genetics , Endophytes/growth & development , Microbiological Techniques , Molecular Sequence Data , Molecular Typing , Nitrogenase/analysis , Phylogeny , Plant Root Nodulation , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...