Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Cancer Gene Ther ; 29(8-9): 1263-1275, 2022 08.
Article in English | MEDLINE | ID: mdl-35194200

ABSTRACT

DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Genes, Homeobox/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Oncogene ; 39(10): 2227, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31700154

ABSTRACT

The original version of this Article omitted the following from the Acknowledgements: This research was also supported by grants to KZ (UL and L-CNRS). This has now been corrected in both the PDF and HTML versions of the Article.

4.
Oncogene ; 39(6): 1198-1212, 2020 02.
Article in English | MEDLINE | ID: mdl-31649334

ABSTRACT

The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell-cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.


Subject(s)
Carbenoxolone/pharmacology , Cytarabine/pharmacology , Drug Resistance, Neoplasm , Gap Junctions/drug effects , Leukemia, Myeloid, Acute/drug therapy , Mesenchymal Stem Cells/cytology , Tumor Microenvironment/drug effects , Animals , Anti-Ulcer Agents/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Cell Proliferation , Drug Therapy, Combination , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Cancer Res ; 75(16): 3373-83, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26141862

ABSTRACT

Hepatocyte growth factor (HGF) and its receptor MET represent validated targets for cancer therapy. However, HGF/MET inhibitors being explored as cancer therapeutics exhibit cytostatic activity rather than cytotoxic activity, which would be more desired. In this study, we engineered an antagonistic anti-MET antibody that, in addition to blocking HGF/MET signaling, also kills MET-overexpressing cancer cells by antibody-dependent cellular cytotoxicity (ADCC). As a control reagent, we engineered the same antibody in an ADCC-inactive form that is similarly capable of blocking HGF/MET activity, but in the absence of any effector function. In comparing these two antibodies in multiple mouse models of cancer, including HGF-dependent and -independent tumor xenografts, we determined that the ADCC-enhanced antibody was more efficacious than the ADCC-inactive antibody. In orthotopic mammary carcinoma models, ADCC enhancement was crucial to deplete circulating tumor cells and to suppress metastases. Prompted by these results, we optimized the ADCC-enhanced molecule for clinical development, generating an antibody (ARGX-111) with improved pharmacologic properties. ARGX-111 competed with HGF for MET binding, inhibiting ligand-dependent MET activity, downregulated cell surface expression of MET, curbing HGF-independent MET activity, and engaged natural killer cells to kill MET-expressing cancer cells, displaying MET-specific cytotoxic activity. ADCC assays confirmed the cytotoxic effects of ARGX-111 in multiple human cancer cell lines and patient-derived primary tumor specimens, including MET-expressing cancer stem-like cells. Together, our results show how ADCC provides a therapeutic advantage over conventional HGF/MET signaling blockade and generates proof-of-concept for ARGX-111 clinical testing in MET-positive oncologic malignancies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Hepatocyte Growth Factor/metabolism , Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Binding, Competitive , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Flow Cytometry , Humans , Mice, Nude , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-met/immunology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
6.
PLoS One ; 7(10): e46738, 2012.
Article in English | MEDLINE | ID: mdl-23071625

ABSTRACT

The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by "RTK swapping" by interfering with PDGFRß phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Molecular Targeted Therapy , Transcriptome/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Benzothiazoles/administration & dosage , Benzothiazoles/adverse effects , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Humans , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice , Mice, Nude , Mutation, Missense , Phosphorylation , Protein Interaction Maps , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...