Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant J ; 117(1): 264-279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37844131

ABSTRACT

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Subject(s)
Aquaporins , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Phosphorylation , Aquaporins/genetics , Aquaporins/metabolism , Water/metabolism
2.
Plant Physiol ; 187(4): 2056-2070, 2021 12 04.
Article in English | MEDLINE | ID: mdl-35235672

ABSTRACT

Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways. It identifies some main principles, such as the central signalling role of ROS, with a dual function of aquaporins in water and hydrogen peroxide transport, the importance of aquaporin phosphorylation that is targeted by multiple classes of protein kinases, and the emerging role of lipid signalling. More studies including systems biology approaches are now needed to comprehend how plant water transport can be adjusted in response to combined stresses.


Subject(s)
Aquaporins/metabolism , Biological Transport/drug effects , Cell Membrane/metabolism , Plant Growth Regulators/metabolism , Plant Physiological Phenomena/drug effects , Signal Transduction/drug effects , Water/metabolism , Metabolic Networks and Pathways
3.
Plant Cell ; 31(2): 417-429, 2019 02.
Article in English | MEDLINE | ID: mdl-30674691

ABSTRACT

The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.


Subject(s)
14-3-3 Proteins/metabolism , Aquaporins/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , 14-3-3 Proteins/genetics , Aquaporins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phosphorylation/genetics , Phosphorylation/physiology , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Proteomics/methods
4.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641502

ABSTRACT

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , MAP Kinase Kinase Kinases/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Potassium/metabolism , Water/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Plant , MAP Kinase Kinase Kinases/genetics , Permeability , Transcription Factors/genetics
5.
Plant Physiol Biochem ; 82: 123-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24946225

ABSTRACT

A key event in seed germination is water uptake-mediated growth initiation in embryonic axes. Vicia faba var. minor (broad bean) seeds were used for studying cell growth, vacuolar biogenesis, expression and function of tonoplast water channel proteins (aquaporins) in embryonic axes during seed imbibition, radicle emergence and growth. Hypocotyl and radicle basal cells showed vacuole restoration from protein storage vacuoles, whereas de novo vacuole formation from provacuoles was observed in cells newly produced by root meristem. cDNA fragments of seven novel aquaporin isoforms including five Tonoplast Intrinsic Proteins (TIP) from three sub-types were amplified by PCR. The expression was probed using q-RT-PCR and when possible with isoform-specific antibodies. Decreased expression of TIP3s was associated to the transformation of protein storage vacuoles to vacuoles, whereas enhanced expression of a TIP2 homologue was closely linked to the fast cell elongation. Water channel functioning checked by inhibitory test with mercuric chloride showed closed water channels prior to growth initiation and active water transport into elongating cells. The data point to a crucial role of tonoplast aquaporins during germination, especially during growth of embryonic axes, due to accelerated water uptake and vacuole enlargement resulting in rapid cell elongation.


Subject(s)
Aquaporins/metabolism , Germination/physiology , Plant Proteins/metabolism , Seeds/cytology , Seeds/physiology , Vacuoles/metabolism , Vacuoles/physiology , Water/metabolism
6.
Plant Physiol ; 164(4): 1697-706, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24492334

ABSTRACT

The water and nutrient status of pollen is crucial to plant reproduction. Pollen grains of Arabidopsis (Arabidopsis thaliana) contain a large vegetative cell and two smaller sperm cells. Pollen grains express AtTIP1;3 and AtTIP5;1, two members of the Tonoplast Intrinsic Protein subfamily of aquaporins. To address the spatial and temporal expression pattern of the two homologs, C-terminal fusions of AtTIP1;3 and AtTIP5;1 with green fluorescent protein and mCherry, respectively, were expressed in transgenic Arabidopsis under the control of their native promoter. Confocal laser scanning microscopy revealed that AtTIP1;3 and AtTIP5;1 are specific for the vacuoles of the vegetative and sperm cells, respectively. The tonoplast localization of AtTIP5;1 was established by reference to fluorescent protein markers for the mitochondria and vacuoles of sperm and vegetative cells and is at variance with the claim that AtTIP5;1 is localized in vegetative cell mitochondria. AtTIP1;3-green fluorescent protein and AtTIP5;1-mCherry showed concomitant expression, from first pollen mitosis up to pollen tube penetration in the ovule, thereby revealing the dynamics of vacuole morphology in maturating and germinating pollen. Transfer DNA insertion mutants for either AtTIP1;3 or AtTIP5;1 showed no apparent growth phenotype and had no significant defect in male transmission of the mutated alleles. By contrast, a double knockout displayed an abnormal rate of barren siliques, this phenotype being more pronounced under limited water or nutrient supply. The overall data indicate that vacuoles of vegetative and sperm cells functionally interact and contribute to male fertility in adverse environmental conditions.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Pollen/metabolism , Vacuoles/metabolism , Alleles , Arabidopsis/genetics , DNA, Bacterial/genetics , Gene Knockout Techniques , Germination , Green Fluorescent Proteins/metabolism , Mutagenesis, Insertional/genetics , Organ Specificity , Phenotype , Reproduction , Staining and Labeling , Time Factors
7.
Plant Cell ; 25(3): 1029-39, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23532070

ABSTRACT

The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/radiation effects , Gene Expression Regulation, Plant , Light , Plant Leaves/metabolism , Aquaporins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport , Cell Membrane/genetics , Cell Membrane/metabolism , Darkness , Mesophyll Cells/metabolism , Osmosis , Phosphorylation , Plant Leaves/genetics , Plant Leaves/radiation effects , Plant Transpiration , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/radiation effects , Protein Isoforms/genetics , Protein Isoforms/metabolism , Water/metabolism
8.
Plant Physiol ; 152(3): 1418-30, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20034965

ABSTRACT

Aquaporins are channel proteins that facilitate the transport of water across plant cell membranes. In this work, we used a combination of pharmacological and reverse genetic approaches to investigate the overall significance of aquaporins for tissue water conductivity in Arabidopsis (Arabidopsis thaliana). We addressed the function in roots and leaves of AtPIP1;2, one of the most abundantly expressed isoforms of the plasma membrane intrinsic protein family. At variance with the water transport phenotype previously described in AtPIP2;2 knockout mutants, disruption of AtPIP1;2 reduced by 20% to 30% the root hydrostatic hydraulic conductivity but did not modify osmotic root water transport. These results document qualitatively distinct functions of different PIP isoforms in root water uptake. The hydraulic conductivity of excised rosettes (K(ros)) was measured by a novel pressure chamber technique. Exposure of Arabidopsis plants to darkness increased K(ros) by up to 90%. Mercury and azide, two aquaporin inhibitors with distinct modes of action, were able to induce similar inhibition of K(ros) by approximately 13% and approximately 25% in rosettes from plants grown in the light or under prolonged (11-18 h) darkness, respectively. Prolonged darkness enhanced the transcript abundance of several PIP genes, including AtPIP1;2. Mutant analysis showed that, under prolonged darkness conditions, AtPIP1;2 can contribute to up to approximately 20% of K(ros) and to the osmotic water permeability of isolated mesophyll protoplasts. Therefore, AtPIP1;2 can account for a significant portion of aquaporin-mediated leaf water transport. The overall work shows that AtPIP1;2 represents a key component of whole-plant hydraulics.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Membrane Proteins/metabolism , Plant Leaves/physiology , Plant Roots/physiology , Water/metabolism , Aquaporins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Azides/pharmacology , DNA, Bacterial/genetics , DNA, Plant/genetics , Darkness , Gene Expression Regulation, Plant , Genetic Complementation Test , Membrane Proteins/genetics , Mercury/pharmacology , Mutagenesis, Insertional , Mutation , Osmosis , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
9.
Plant J ; 56(2): 207-218, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18573191

ABSTRACT

The water uptake capacity of plant roots (i.e. their hydraulic conductivity, Lp(r)) is determined in large part by aquaporins of the plasma membrane intrinsic protein (PIP) subfamily. In the present work, we investigated two stimuli, salicylic acid (SA) and salt, because of their ability to induce an accumulation of reactive oxygen species (ROS) and an inhibition of Lp(r) concomitantly in the roots of Arabidopsis plants. The inhibition of Lp(r) by SA was partially counteracted by preventing the accumulation of hydrogen peroxide (H(2)O(2)) with exogenous catalase. In addition, exogenous H(2)O(2) was able to reduce Lp(r) by up to 90% in <15 min. Based on the lack of effects of H(2)O(2) on the activity of individual aquaporins in Xenopus oocytes, and on a pharmacological dissection of the action of H(2)O(2) on Lp(r), we propose that ROS do not gate Arabidopsis root aquaporins through a direct oxidative mechanism, but rather act through cell signalling mechanisms. Expression in transgenic roots of PIP-GFP fusions and immunogold labelling indicated that external H(2)O(2) enhanced, in <15 min, the accumulation of PIPs in intracellular structures tentatively identified as vesicles and small vacuoles. Exposure of roots to SA or salt also induced an intracellular accumulation of the PIP-GFP fusion proteins, and these effects were fully counteracted by co-treatment with exogenous catalase. In conclusion, the present work identifies SA as a novel regulator of aquaporins, and delineates an ROS-dependent signalling pathway in the roots of Arabidopsis. Several abiotic and biotic stress-related stimuli potentially share this path, which involves an H(2)O(2)-induced internalization of PIPs, to downregulate root water transport.


Subject(s)
Arabidopsis/metabolism , Hydrogen Peroxide/pharmacology , Plant Roots/metabolism , Signal Transduction , Water/metabolism , Animals , Aquaporins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cells, Cultured , Down-Regulation , Gene Expression Regulation, Plant , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Immunoelectron , Oocytes/metabolism , Plant Epidermis/metabolism , Plant Epidermis/ultrastructure , Plant Roots/genetics , Plants, Genetically Modified/metabolism , Salicylic Acid/pharmacology , Sodium Chloride/pharmacology , Xenopus/metabolism
10.
Plant Signal Behav ; 3(12): 1096-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19704504

ABSTRACT

Aquaporins, which facilitate the diffusion of water across biological membranes, are key molecules for the regulation of water transport at the cell and organ levels. We recently reported that hydrogen peroxide (H(2)O(2)) acts as an intermediate in the regulation of Arabidopsis root water transport and aquaporins in response to NaCl and salicylic acid (SA).1 Its action involves signaling pathways and an internalization of aquaporins from the cell surface. The present addendum connects these findings to another recent work which describes multiple phosphorylations in the C-terminus of aquaporins expressed in the Arabidopsis root plasma membrane.2 A novel role for phosphorylation in the process of salt-induced relocalization of AtPIP2;1, one of the most abundant root aquaporins, was unraveled. Altogether, the data delineate reactive oxygen species (ROS)-dependent signaling mechanisms which, in response to a variety of abiotic and biotic stresses, can trigger phosphorylation-dependent PIP aquaporin intracellular trafficking and root water transport downregulation.

11.
Plant Cell Physiol ; 47(9): 1241-50, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16926168

ABSTRACT

Extensive and kinetically well-defined water exchanges occur during germination of seeds. A putative role for aquaporins in this process was investigated in Arabidopsis. Macro-arrays carrying aquaporin gene-specific tags and antibodies raised against aquaporin subclasses revealed two distinct aquaporin expression programs between dry seeds and young seedlings. High expression levels of a restricted number of tonoplast intrinsic protein (TIP) isoforms (TIP3;1 and/or TIP3;2, and TIP5;1) together with a low expression of all 13 plasma membrane aquaporin (PIP) isoforms was observed in dry and germinating materials. In contrast, prevalent expression of aquaporins of the TIP1, TIP2 and PIP subgroups was induced during seedling establishment. Mercury (5 microM HgCl(2)), a general blocker of aquaporins in various organisms, reduced the speed of seed germination and induced a true delay in maternal seed coat (testa) rupture and radicle emergence, by 8-9 and 25-30 h, respectively. Most importantly, mercury did not alter seed lot homogeneity nor the seed germination developmental sequence, and its effects were largely reversed by addition of 2 mM dithiothreitol, suggesting that these effects were primarily due to oxidation of cell components, possibly aquaporins, without irreversible alteration of cell integrity. Measurements of water uptake in control and mercury-treated seeds suggested that aquaporin functions are not involved in early seed imbibition (phase I) but would rather be associated with a delayed initiation of phase III, i.e. water uptake accompanying expansion and growth of the embryo. A possible role for aquaporins in germinating seeds and more generally in plant tissue growth is discussed.


Subject(s)
Aquaporins/genetics , Aquaporins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Seeds/growth & development , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Germination , Mercury/pharmacology , Oligonucleotide Array Sequence Analysis , Seeds/drug effects , Seeds/genetics , Seeds/metabolism , Water/metabolism
12.
Nature ; 425(6956): 393-7, 2003 Sep 25.
Article in English | MEDLINE | ID: mdl-14508488

ABSTRACT

Flooding of soils results in acute oxygen deprivation (anoxia) of plant roots during winter in temperate latitudes, or after irrigation, and is a major problem for agriculture. One early response of plants to anoxia and other environmental stresses is downregulation of water uptake due to inhibition of the water permeability (hydraulic conductivity) of roots (Lp(r)). Root water uptake is mediated largely by water channel proteins (aquaporins) of the plasma membrane intrinsic protein (PIP) subgroup. These aquaporins may mediate stress-induced inhibition of Lp(r) but the mechanisms involved are unknown. Here we delineate the whole-root and cell bases for inhibition of water uptake by anoxia and link them to cytosol acidosis. We also uncover a molecular mechanism for aquaporin gating by cytosolic pH. Because it is conserved in all PIPs, this mechanism provides a basis for explaining the inhibition of Lp(r) by anoxia and possibly other stresses. More generally, our work opens new routes to explore pH-dependent cell signalling processes leading to regulation of water transport in plant tissues or in animal epithelia.


Subject(s)
Aquaporins/metabolism , Arabidopsis/metabolism , Cytosol/metabolism , Ion Channel Gating , Oxygen/metabolism , Plant Roots/metabolism , Water/metabolism , Animals , Arabidopsis/cytology , Biological Transport , Cell Respiration , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Oocytes , Permeability , Plant Diseases , Plant Roots/cytology , Protons , Xenopus laevis
13.
Cell Transplant ; 11(2): 169-80, 2002.
Article in English | MEDLINE | ID: mdl-12099640

ABSTRACT

Changes in morphology, metabolism, myosin heavy chain gene expression, and functional performances in damaged rabbit muscles with or without transplantation of primary satellite cells were investigated. For this purpose, we damaged bilaterally the fast muscle tibialis anterior (TA) with either 1.5 or 2.6 ml cardiotoxin 10(-5) M injections. Primary cultures of satellite cells were autotransplanted unilaterally 5 days after muscle degeneration. Two months postoperation, the masses of damaged TAs, with or without transplantation, were significantly larger than those of the controls. Furthermore, damaged transplanted muscles weighed significantly more than damaged muscles only. The increase in muscle mass was essentially due to increased fiber size. These results were independent of the quantity of cardiotoxin injected into the muscles. Maximal forces were similar in control and 2.6 ml damaged TAs with or without satellite cell transfer. In contrast, 1.5 ml damaged TAs showed a significant decrease in maximal forces that reached the level of controls after transplantation of satellite cells. Fatigue resistance was similar in control and 1.5 ml damaged TAs independently of satellite cell transfer. Fatigue index was significantly higher in 2.6 ml damaged muscles with or without cell transplantation. These changes could be explained in part by muscle metabolism, which shifted towards oxidative activities, and by gene expression of myosin heavy chain isoforms, which presented an increase in type IIa and a decrease in type I and IIb in all damaged muscles with or without cell transfer. Under our experimental conditions, these results show that muscle damage rather than satellite cell transplantation changes muscle metabolism, myosin heavy chain isoform gene expression, and, to a lesser extent, muscle contractile properties. In contrast, muscle weight and fiber size are increased both by muscle damage and by satellite cell transfer.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/surgery , Muscular Diseases/surgery , Myoblasts, Skeletal/transplantation , Recovery of Function/physiology , Regeneration/physiology , Animals , Cells, Cultured , Energy Metabolism/physiology , Gene Expression/physiology , Graft Survival/physiology , Male , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiopathology , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/physiology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Organ Size/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rabbits
14.
Cell Transplant ; 11(2): 169-180, 2002 Mar.
Article in English | MEDLINE | ID: mdl-28853949

ABSTRACT

Changes in morphology, metabolism, myosin heavy chain gene expression, and functional performances in damaged rabbit muscles with or without transplantation of primary satellite cells were investigated. For this purpose, we damaged bilaterally the fast muscle tibialis anterior (TA) with either 1.5 or 2.6 ml cardiotoxin 10-5 M injections. Primary cultures of satellite cells were autotransplanted unilaterally 5 days after muscle degeneration. Two months postoperation, the masses of damaged TAs, with or without transplantation, were significantly larger than those of the controls. Furthermore, damaged transplanted muscles weighed significantly more than damaged muscles only. The increase in muscle mass was essentially due to increased fiber size. These results were independent of the quantity of cardiotoxin injected into the muscles. Maximal forces were similar in control and 2.6 ml damaged TAs with or without satellite cell transfer. In contrast, 1.5 ml damaged TAs showed a significant decrease in maximal forces that reached the level of controls after transplantation of satellite cells. Fatigue resistance was similar in control and 1.5 ml damaged TAs independently of satellite cell transfer. Fatigue index was significantly higher in 2.6 ml damaged muscles with or without cell transplantation. These changes could be explained in part by muscle metabolism, which shifted towards oxidative activities, and by gene expression of myosin heavy chain isoforms, which presented an increase in type IIa and a decrease in type I and IIb in all damaged muscles with or without cell transfer. Under our experimental conditions, these results show that muscle damage rather than satellite cell transplantation changes muscle metabolism, myosin heavy chain isoform gene expression, and, to a lesser extent, muscle contractile properties. In contrast, muscle weight and fiber size are increased both by muscle damage and by satellite cell transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...