Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 276: 116658, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39088999

ABSTRACT

The enterovirus is a genus of single-stranded, highly diverse positive-sense RNA viruses, including Human Enterovirus A-D and Human Rhinovirus A-C species. They are responsible for numerous diseases and some infections can progress to life-threatening complications, particularly in children or immunocompromised patients. To date, there is no treatment against enteroviruses on the market, except for polioviruses (vaccine) and EV-A71 (vaccine in China). Following a decrease in enterovirus infections during and shortly after the (SARS-Cov2) lockdown, enterovirus outbreaks were once again detected, notably in young children. This reemergence highlights on the need to develop broad-spectrum treatment against enteroviruses. Over the last year, our research team has identified a new class of small-molecule inhibitors showing anti-EV activity. Targeting the well-known hydrophobic pocket in the viral capsid, these compounds show micromolar activity against EV-A71 and a high selectivity index (SI) (5h: EC50, MRC-5 = 0.57 µM, CC50, MRC-5 >20 µM, SI > 35; EC50, RD = 4.38 µM, CC50, RD > 40 µM, SI > 9; 6c: EC50, MRC-5 = 0.29 µM, CC50, MRC-5 >20 µM, SI > 69; EC50, RD = 1.66 µM, CC50, RD > 40 µM, SI > 24; Reference: Vapendavir EC50, MRC-5 = 0.36 µM, CC50, MRC-5 > 20 µM, EC50, RD = 0.53 µM, CC50, RD > 40 µM, SI > 63). The binding mode of these compounds in complex with enterovirus capsids was analyzed and showed a series of conserved interactions. Consequently, 6c and its derivatives are promising candidates for the treatment of enterovirus infections.


Subject(s)
Antiviral Agents , Capsid , Enterovirus A, Human , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Enterovirus A, Human/drug effects , Capsid/drug effects , Capsid/metabolism , Structure-Activity Relationship , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Molecular Structure , Microbial Sensitivity Tests , Dose-Response Relationship, Drug
2.
Cancer Res ; 82(21): 3868-3879, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36040356

ABSTRACT

Regulatory T cells (Treg) are an immunosuppressive subtype of CD4+ T cells essential for maintaining self-tolerance in physiological settings. Tregs also abundantly infiltrate inflamed tumor tissues, impeding the host's antitumor immune response and contributing to tumor growth and metastasis. In breast cancers, subsets of Tregs express highly immunosuppressive effector phenotypes that favor tumorigenesis, progression, and resistance to immune-checkpoint inhibitor therapies. Tregs share phenotypic features with cytotoxic lymphocytes, rendering them difficult to inhibit without compromising productive antitumor immunity. In addition, systemic targeting of Tregs causes serious autoimmune adverse events in patients with cancer. Hence, the identification of candidate targets or methodologies allowing the specific elimination of tumor antigen-specific Tregs, including tumor-infiltrating Tregs, is a prerequisite for developing efficient and safe combinatorial immunotherapeutic strategies in breast cancers. To date, numerous preclinical studies have demonstrated that specific targeting of breast tumor-infiltrating Tregs restores a competent antitumor immune response and improves responses to immune-checkpoint inhibitors such as PD-1/PD-L1 blockade. Herein, we discuss major candidate molecules for Treg-targeted therapeutic strategies in breast cancers, detailing the pros and cons of various approaches, including mAb-mediated depletion, homeostasis destabilization, and functional blockade.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Immunotherapy/methods , Neoplasms/pathology , Immune Tolerance , Antigens, Neoplasm , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL