Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 88(13): 8286-8299, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37273214

ABSTRACT

In the past, Lanthanide Luminescent Bioprobes (LLBs) based on pyclen-bearing π-extended picolinate antennas were synthesized and demonstrated well-adapted optical properties for biphotonic microscopy. The objective of this work is to develop a strategy to design bifunctional analogues of the previously studied LLBs presenting an additional reactive chemical group to allow their coupling to biological vectors to reach deep in vivo targeted two-photon bioimaging. Herein, we elaborated a synthetic scheme allowing the introduction of a primary amine on the para position of the macrocyclic pyridine unit. The photophysical and bioimaging studies demonstrate that the introduction of the reactive function does not alter the luminescent properties of the LLBs paving the way for further applications.


Subject(s)
Biosensing Techniques , Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Azabicyclo Compounds , Photons
2.
Angew Chem Int Ed Engl ; 62(18): e202301704, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36880808

ABSTRACT

To understand the function of protein in live cells, real-time monitoring of protein dynamics and sensing of their surrounding environment are important methods. Fluorescent labeling tools are thus needed that possess fast labeling kinetics, high efficiency, and long-term stability. We developed a versatile chemical protein-labeling tool based on fluorophore-conjugated diazabicyclooctane ß-lactamase inhibitors (BLIs) and wild-type TEM-1 ß-lactamase protein tag. The fluorescent probes efficiently formed a stable carbamoylated complex with ß-lactamase, and the labeled proteins were visualized over a long period of time in live cells. Moreover, use of an α-fluorinated carboxylate ester-based BLI prodrug enabled the probe to permeate cell membranes and stably label intracellular proteins after unexpected spontaneous ester hydrolysis. Lastly, combining the labeling tool with a pH-activatable fluorescent probe allowed visual monitoring of lysosomal protein translocation during autophagy.


Subject(s)
Proteins , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacology , Staining and Labeling , Proteins/metabolism , Fluorescent Dyes , Penicillins , Molecular Imaging/methods
3.
Biomed Opt Express ; 13(3): 1640-1653, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35414980

ABSTRACT

While numerous transgenic mouse strains have been produced to model the formation of amyloid-ß (Aß) plaques in the brain, efficient methods for whole-brain 3D analysis of Aß deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aß plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aß plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aß plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aß aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.

4.
Adv Healthc Mater ; 11(12): e2102493, 2022 06.
Article in English | MEDLINE | ID: mdl-35285171

ABSTRACT

In vitro cell-based experiments are particularly important in fundamental biological research. Microscopy-based readouts to identify cellular changes in response to various stimuli are a popular choice, but gene expression analysis is essential to delineate the underlying molecular dynamics in cells. However, cell-based experiments often suffer from interexperimental variation, especially while using different readout methods. Therefore, establishment of platforms that allow for cell screening, along with parallel investigations of morphological features, as well as gene expression levels, is crucial. The droplet microarray (DMA) platform enables cell screening in hundreds of nanoliter droplets. In this study, a "Cells-to-cDNA on Chip" method is developed enabling on-chip mRNA isolation from live cells and conversion to cDNA in individual droplets of 200 nL. This novel method works efficiently to obtain cDNA from different cell numbers, down to single cell per droplet. This is the first established miniaturized on-chip strategy that enables the entire course of cell screening, phenotypic microscopy-based assessments along with mRNA isolation and its conversion to cDNA for gene expression analysis by real-time PCR on an open DMA platform. The principle demonstrated in this study sets a beginning for myriad of possible applications to obtain detailed information about the molecular dynamics in cultured cells.


Subject(s)
DNA, Complementary , Cell Line , Gene Expression , Microarray Analysis/methods , RNA, Messenger/genetics
5.
Inorg Chem ; 60(21): 16194-16203, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34637309

ABSTRACT

The multistep synthesis of original antennas incorporating substituted [2.2]paracyclophane (pCp) moieties in the π-conjugated skeleton is described. These antennas, functionalized with an electron donor alkoxy fragment (A1) or with a fused coumarin derivative (A2), are incorporated in a triazacyclonane macrocyclic ligand L1 or L2, respectively, for the design of Eu(III), Yb(III), and Gd(III) complexes. A combined photophysical/theoretical study reveals that A1 presents a charge transfer character via through-space paracyclophane conjugation, whereas A2 presents only local excited states centered on the coumarin-paracyclophane moiety, strongly favoring triplet state population via intersystem crossing. The resulting complexes EuL1 and YbL2 are fully emissive in red and near-infrared, respectively, whereas the GdL2 complex acts as a photosensitizer for the generation of singlet oxygen.

SELECTION OF CITATIONS
SEARCH DETAIL
...