Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 8(1): 143, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773185

ABSTRACT

Respiratory syncytial virus (RSV) causes a high disease burden in older adults. An effective vaccine for this RSV-primed population may need to boost/elicit robust RSV-neutralizing antibody responses and recall/induce RSV-specific T cell responses. To inform the selection of the vaccine formulation for older adults, RSVPreF3 (RSV fusion glycoprotein engineered to maintain the prefusion conformation) with/without AS01 adjuvant was evaluated in mice and bovine RSV infection-primed cattle. In mice, RSVPreF3/AS01 elicited robust RSV-A/B-specific neutralization titers and RSV F-specific polyfunctional CD4+ T cell responses exceeding those induced by non-adjuvanted RSVPreF3. In primed bovines, RSVPreF3/AS01 tended to induce higher pre-/post-vaccination fold-increases in RSV-A/B-specific neutralization titers relative to non-adjuvanted and Alum-adjuvanted RSVPreF3 formulations, and elicited higher RSV F-specific CD4+ T cell frequencies relative to the non-adjuvanted vaccine. Though AS01 adjuvanticity varied by animal species and priming status, RSVPreF3/AS01 elicited/boosted RSV-A/B-specific neutralization titers and RSV F-specific CD4+ T cell responses in both animal models, which supported its further clinical evaluation as prophylactic candidate vaccine for older adults.

2.
Lancet Infect Dis ; 22(7): 1062-1075, 2022 07.
Article in English | MEDLINE | ID: mdl-35461522

ABSTRACT

BACKGROUND: One strategy to develop a universal influenza virus vaccine is to redirect the immune system to the highly conserved haemagglutinin stalk domain by sequentially administering vaccines expressing chimeric (c) haemagglutinins with a conserved stalk domain and divergent head domain, to which humans are naive. We aimed to assess the reactogenicity, safety, and immunogenicity of adjuvanted and unadjuvanted investigational supra-seasonal universal influenza virus vaccines (SUIVs) in healthy young adults. METHODS: In this observer-masked, randomised, controlled, phase 1-2 trial, we recruited adults aged 18-39 years with no clinically significant conditions from six centres in Belgium and the USA. Participants were randomly assigned to ten equally sized groups via an online system with the MATerial Excellence programme. Vaccines contained heterosubtypic group 1 H8, H5, or H11 haemagglutinin heads, an H1 haemagglutinin stalk, and an N1 neuraminidase (cH8/1N1, cH5/1N1, and cH11/1N1; haemagglutinin dose 15 µg/0·5 mL), administered on days 1 and 57, with a month 14 booster. SUIVs were evaluated in the sequences: cH8/1N1-placebo-cH5/1N1, cH5/1N1-placebo-cH8/1N1, or cH8/1N1-cH5/1N1-cH11/1N1, adjuvanted with either AS03 or AS01, or not adjuvanted. The last group received inactivated quadrivalent influenza vaccine (IIV4)-placebo-IIV4. Primary outcomes were safety (analysed in the exposed population) and immunogenicity in terms of the anti-H1 stalk humoral response at 28 days after vaccination (analysed in the per-protocol population, defined as participants who received the study vaccines according to the protocol). This trial is registered with ClinicalTrials.gov, NCT03275389. FINDINGS: Between Sept 25, 2017, and March 26, 2020, 507 eligible participants were enrolled. 468 (92%) participants received at least one dose of study vaccine (exposed population), of whom 244 (52%) were included in the per-protocol population at final analysis at month 26. The safety profiles of all chimeric vaccines were clinically acceptable, with no safety concerns identified. Injection-site pain was the most common adverse event, occurring in 84-96% of participants receiving an adjuvanted SUIV or non-adjuvanted IIV4 and in 40-50% of participants receiving a non-adjuvanted SUIV. Spontaneously reported adverse events up to 28 days after vaccination occurred in 36-60% of participants, with no trends observed for any group. 17 participants had a serious adverse event, none of which were considered to be causally related to the vaccine. Anti-H1 stalk antibody titres were highest in AS03-adjuvanted groups, followed by AS01-adjuvanted and non-adjuvanted groups, and were higher after cH8/1N1 than after cH5/1N1 and after a two-dose primary schedule than after a one-dose schedule. Geometric mean concentrations by ELISA ranged from 21 938·1 ELISA units/mL (95% CI 18 037·8-26 681·8) in the IIV4-placebo-IIV4 group to 116 596·8 ELISA units/mL (93 869·6-144 826·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the first dose and from 15 105·9 ELISA units/mL (12 007·7-19 003·6) in the non-adjuvanted cH5/1N1-placebo-cH8/1N1 group to 74 639·7 ELISA units/mL (59 986·3-92 872·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the second dose. INTERPRETATION: The stalk domain seems to be a rational target for development of a universal influenza virus vaccine via administration of chimeric haemagglutinins with head domains to which humans are naive. FUNDING: GlaxoSmithKline Biologicals.


Subject(s)
Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antibodies, Viral , Hemagglutinins , Humans , Immunogenicity, Vaccine , Virion , Young Adult
3.
J Virol ; 90(15): 6784-98, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27194760

ABSTRACT

UNLABELLED: In the last decade, novel tick-borne pathogenic phleboviruses in the family Bunyaviridae, all closely related to Uukuniemi virus (UUKV), have emerged on different continents. To reproduce the tick-mammal switch in vitro, we first established a reverse genetics system to rescue UUKV with a genome close to that of the authentic virus isolated from the Ixodes ricinus tick reservoir. The IRE/CTVM19 and IRE/CTVM20 cell lines, both derived from I. ricinus, were susceptible to the virus rescued from plasmid DNAs and supported production of the virus over many weeks, indicating that infection was persistent. The glycoprotein GC was mainly highly mannosylated on tick cell-derived viral progeny. The second envelope viral protein, GN, carried mostly N-glycans not recognized by the classical glycosidases peptide-N-glycosidase F (PNGase F) and endoglycosidase H (Endo H). Treatment with ß-mercaptoethanol did not impact the apparent molecular weight of GN On viruses originating from mammalian BHK-21 cells, GN glycosylations were exclusively sensitive to PNGase F, and the electrophoretic mobility of the protein was substantially slower after the reduction of disulfide bonds. Furthermore, the amount of viral nucleoprotein per focus forming unit differed markedly whether viruses were produced in tick or BHK-21 cells, suggesting a higher infectivity for tick cell-derived viruses. Together, our results indicate that UUKV particles derived from vector tick cells have glycosylation and structural specificities that may influence the initial infection in mammalian hosts. This study also highlights the importance of working with viruses originating from arthropod vector cells in investigations of the cell biology of arbovirus transmission and entry into mammalian hosts. IMPORTANCE: Tick-borne phleboviruses represent a growing threat to humans globally. Although ticks are important vectors of infectious emerging diseases, previous studies have mainly involved virus stocks produced in mammalian cells. This limitation tends to minimize the importance of host alternation in virus transmission to humans and initial infection at the molecular level. With this study, we have developed an in vitro tick cell-based model that allows production of the tick-borne Uukuniemi virus to high titers. Using this system, we found that virions derived from tick cells have specific structural properties and N-glycans that may enhance virus infectivity for mammalian cells. By shedding light on molecular aspects of tick-derived viral particles, our data illustrate the importance of considering the host switch in studying early virus-mammalian receptor/cell interactions. The information gained here lays the basis for future research on not only tick-borne phleboviruses but also all viruses and other pathogens transmitted by ticks.


Subject(s)
Bunyaviridae Infections/virology , Disease Models, Animal , Ixodes/pathogenicity , Tick Infestations/transmission , Uukuniemi virus/pathogenicity , Virion/physiology , Animals , Glycosylation , HeLa Cells , Humans , Tick Infestations/virology
4.
Virologie (Montrouge) ; 16(3): 158-167, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-33065872

ABSTRACT

Morbilliviruses cause a severe and sometimes lethal disease in their respective hosts, which is characterized by a generalized immunosuppression, respiratory and gastro-intestinal clinical signs, and occasional neurological complications. This similarity in the biology of different members of the morbillivirus genus constitutes the basis for the study of canine distemper virus in its natural hosts as a model for the characterization of morbillivirus pathogenesis. In combination with the reverse genetics technology, which allows the production of recombinant viruses carrying specific genetic modifications, this model has made important contributions to our understanding of the mechanisms underlying morbillivirus immunosuppression, dissemination, and neuroinvasion.

5.
J Gen Virol ; 92(Pt 5): 1162-1171, 2011 May.
Article in English | MEDLINE | ID: mdl-21307226

ABSTRACT

Current influenza vaccines containing primarily hypervariable haemagglutinin and neuraminidase proteins must be prepared against frequent new antigenic variants. Therefore, there is an ongoing effort to develop influenza vaccines that also elicit strong and sustained cytotoxic responses against highly conserved determinants such as the matrix (M1) protein and nucleoprotein (NP). However, their antigenic presentation properties in humans are less defined. Accordingly, we analysed MHC class I and class II presentation of endogenously processed M1 and NP in human antigen presenting cells and observed expansion of both CD8(+)- and CD4(+)-specific effector T lymphocytes secreting gamma interferon and tumour necrosis factor. Further enhancement of basal MHC-II antigenic presentation did not improve CD4(+) or CD8(+) T-cell quality based on cytokine production upon challenge, suggesting that endogenous M1 and NP MHC-II presentation is sufficient. These new insights about T-lymphocyte expansion following endogenous M1 and NP MHC-I and -II presentation will be important to design complementary heterosubtypic vaccination strategies.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/metabolism , Influenza A Virus, H1N1 Subtype/immunology , RNA-Binding Proteins/immunology , Viral Core Proteins/immunology , Viral Matrix Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Histocompatibility Antigens Class I/immunology , Humans , Interferon-gamma/metabolism , Nucleocapsid Proteins , Tumor Necrosis Factor-alpha/metabolism
6.
Vaccine ; 27(36): 4961-6, 2009 Aug 06.
Article in English | MEDLINE | ID: mdl-19540272

ABSTRACT

CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.


Subject(s)
Distemper Virus, Canine/immunology , Distemper/prevention & control , Genetic Vectors , Measles virus/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Administration, Intranasal , Animals , Antibodies, Viral/blood , Body Temperature , Body Weight , Distemper Virus, Canine/genetics , Ferrets , Immunoglobulin G/blood , Injections, Intramuscular , Leukocytes/immunology , Male , Viral Envelope Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...