Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6934, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117393

ABSTRACT

Rapid and recurrent breakthroughs of new SARS-CoV-2 strains (variants) have prompted public health authorities worldwide to set up surveillance networks to monitor the circulation of variants of concern. The use of next-generation sequencing technologies has raised the need for quality control assessment as required in clinical laboratories. The present study is the first to propose a validation guide for SARS-CoV-2 typing using three different NGS methods fulfilling ISO15189 standards. These include the assessment of the risk, specificity, accuracy, reproducibility, and repeatability of the methods. Among the three methods used, two are amplicon-based involving reverse transcription polymerase chain reaction (Artic v3 and Midnight v1) on Oxford Nanopore Technologies while the third one is amplicon-based using reverse complement polymerase chain reaction (Nimagen) on Illumina technology. We found that all methods met the quality requirement (e.g., 100% concordant typing results for accuracy, reproducibility, and repeatability) for SARS-CoV-2 typing in clinical setting. Additionally, the typing results emerging from each of the three sequencing methods were compared using three widely known nomenclatures (WHO, Pangolineage, and Nextclade). They were also compared regarding single nucleotide variations. The outcomes showed that Artic v3 and Nimagen should be privileged for outbreak investigation as they provide higher quality results for samples that do not meet inclusion criteria for analysis in a clinical setting. This study is a first step towards validation of laboratory developed NGS tests in the context of the new European regulation for medical devices and in vitro diagnostics.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing/methods , Reproducibility of Results , Accreditation
2.
J Med Virol ; 93(9): 5655-5659, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34009649

ABSTRACT

The current reliable recommended test for coronavirus disease 2019 (COVID-19) diagnosis is quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Rapid antigen test devices could be useful as they are less expensive, faster without the need of specialized laboratories to perform the test. We report the performances of two rapid immunochromatographic antigen testing devices compared with RT-qPCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in nasopharyngeal samples. We carried out a lateral-flow tests study on 401 nasopharyngeal swab samples from nonduplicated suspected COVID-19 subjects. An equal volume of universal transport medium tubes-containing samples (dilution ratio = 1:15) were added to the manufacturer's extraction buffer solution (dilution ratio = 1:2) and analyzed on BioSpeedia COVID19Speed-Antigen Test and on Abbott Panbio™ COVID-19 Ag Rapid Test, devices. Qualitative results were compared to those obtained by the RT-qPCR (Allplex™ SARS-CoV-2 Assay Seegene). Based on our data, the overall sensitivity for BioSpeedia and Panbio devices was estimated at 65.5% and 75.0%, respectively. The sensitivity was greater for cycle threshold values less than 25 achieving 90.4 and 96.8 for BioSpeedia and Panbio devices, respectively. A perfect specificity of 100.0% was observed for both devices.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Antigens, Viral/analysis , Diagnostic Tests, Routine , Humans , Nasopharynx/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL