Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(16): 26552-26564, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710513

ABSTRACT

We report on what is, to our knowledge, one of the first realizations of a CBC (coherent beam combining)-based laser emitter carrying a 10.66 Gb/s telecom signal in free-space optics, within the laboratory environment. Two telecom modulations have been tested: NRZ (non-return-to-zero, in amplitude) and DPSK (differential phase-shift keying, in phase). The modulated signal is split and amplified in three fiber amplifiers, delivering up to 3 W each. CBC of data amplified signals is achieved with residual phase errors well below < λ/60 RMS, using a phase-tagging technique (LOCSET). A first analysis of the influence of various parameters (such as phase-tagging modulation depth, optical path difference, number of channels, amplifier power) on the locking and data transmission quality is investigated. The study shows that the phase-tagging modulation depth and optical path difference are the main critical issues when carrying data on a CBC signal.

2.
Appl Opt ; 61(27): 7846-7851, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36255898

ABSTRACT

One of the most promising solutions to access high power laser chains is to achieve a coherent combination of a large number of elementary lasers. To interfere constructively, these laser sources should be identical and operate under the same conditions. However, despite these efforts, differential delays appear in the course of time, which must be compensated for. While designing the required correction system, knowing the behavior of a laser as a function of the environmental conditions is not crucial, whereas having access to the differences in the behaviors of identical lasers is, leading to difficulties in modeling. The purpose of this paper is to illustrate how a large set of lasers can be simultaneously analyzed to estimate their variations and optimize a correction system. The X-Coherent Amplified Network laser relies on 61 fiber amplifiers, which are as identical as possible. This state of the art femtosecond digital laser therefore appears as an ideal candidate to study a large number of fiber lasers working under controlled conditions.

3.
Appl Opt ; 60(27): 8524-8533, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34612955

ABSTRACT

A laser testbed based on active coherent beam combination (CBC) of seven 1.5 µm, 3 W fiber amplifiers was developed for applications requiring high power such as power density deposition on targets or free space laser communication. For the first time to our knowledge, the frequency-tagging locking of optical coherence by single-detector electronic-frequency tagging technique was implemented in the field in real atmospheric turbulence conditions in a target-in-the-loop configuration. Successful combination was achieved after horizontal propagation of 311 m and 1 km, at 1.5 m above the ground, while the estimated average turbulence strength was Cn2∼4.10-14m-2/3. We present the CBC laser bench and an embedded near-field interferometer called PISTIL (PISton and TILt) able to measure the relative phase shift of each emitter. We show that this measurement can provide information on relative turbulence-induced phase variation of the combined laser beams. In particular, the far-field beam envelope wandering can be estimated through this diagnosis. Results are supported by an analytical model and confirmed by numerical post-analysis of measured far-field interference. This additional interferometer may improve CBC beam pointing through turbulence.

4.
Opt Express ; 29(4): 5193-5204, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726059

ABSTRACT

The purpose of this paper is to show that the Shack-Hartmann wavefront sensor (SHWFS) gives access to more derivatives than the two orthogonal derivatives classically extracted either by estimating the centroid or by taking into account the first two harmonics of the Fourier transform. The demonstration is based on a simple model of the SHWFS, taking into account the microlens array as a whole and linking the SHWFS to the multi-lateral shearing interferometry family. This allows for estimating the quality of these additional derivatives, paving the way to new reconstruction techniques involving more than two cross derivatives that should improve the signal-to-noise ratio.

5.
Opt Express ; 28(22): 32415-32425, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114928

ABSTRACT

The PISTIL interferometry has been recently developed for the wavefront sensing of phase delays (pistons) and tilts of segmented surfaces, used in many domains such as astronomy, high-power lasers or ophthalmology. In this paper, we propose a two-wavelength version of this interferometer developed to bypass the dynamic range limitation of the ambiguous 2π phase wrapping. Principle of the technique is presented, along with experimental results obtained with a demonstration deformable mirror PTT-111 from Iris AO. Above wavelength pistons are measured with a precision and accuracy below λ/100, making the two-wavelength PISTIL interferometry a high-dynamic range technique. To prove these performances, we successfully compare the results in terms of precision and accuracy with those of a reference phase-shifting Interferometer, from a blind experimentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...