Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 664: 857-867, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493651

ABSTRACT

HYPOTHESIS: Imogolite nanotubes (INTs) are unique anisometric particles with monodisperse nanometric diameters. Aluminogermanate double-walled INTs (Ge-DWINTs) are obtained with variable aspect ratios by controlling the synthesis conditions. It thus appears as an interesting model system to investigate how aspect ratio and ionic valence influence the colloidal behavior of highly anisometric rods. EXPERIMENTS: The nanotubes were synthesized by hydrothermal treatment for 5 or 20 days to modify the aspect ratio while the electrostatic interactions were investigated by comparing the colloidal stability in symmetric and asymmetric electrolytes. The phase behavior and their related microstructure were determined by optical observations and small-angle X-ray scattering measurements, coupled with interparticle distance modelling. FINDINGS: We revealed that colloidal suspensions of Ge-DWINTs prepared in NaCl are guided by repulsive double layer forces, undergoing different liquid crystal phase transitions before stiffen into a glass-like state. We found that the microstructure can be rationalized by taking into account the anisometric nature of the particles. By contrast, dispersions prepared with asymmetric electrolytes are governed by strong attractive forces and thus form space-filling gels containing large nanotubes aggregates.

2.
Small ; 20(24): e2308665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38229562

ABSTRACT

The formation of imogolite nanotubes is reported to be a kinetic process involving intermediate roof-tile nanostructures. Here, the structural evolution occurring during the synthesis of aluminogermanate double-walled imogolite nanotubes is in situ monitored, thanks to an instrumented autoclave allowing the control of the temperature, the continuous measurement of pH and pressure, and the regular sampling of gas and solution. Chemical analyses confirm the completion of the precursor's conversion with the release of CO2, ethanol, and dioxane as main side products. The combination of microscopic observations, infrared, and absorption spectroscopies with small and wide-angle X-ray scattering experiments unravel a unique growth mechanism implying transient single-walled nanotubes instead of the self-assembly of stacked proto-imogolite tiles. The growth formation of these transient nanotubes is followed at the molecular level by Quick-X-ray absoprtion specotrscopy experiments. Multivariate data analysis evidences that the near neighboring atomic environment of Ge evolves from monotonous to a more complex one as the reaction progresses. The following transformation into a double-walled nanotube takes place at a nearly constant mean radius, as demonstrated by the simulation of X-ray scattering diagrams. Overall, transient nanotubes appear to serve for the anchoring of a new wall, corresponding to a mechanism radically different from that proposed in the literature.

3.
Langmuir ; 40(1): 84-90, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38128069

ABSTRACT

Many ionic surfactants, such as sodium dodecyl sulfate (SDS) crystallize out of solution if the temperature falls below the crystallization boundary. The crystallization temperature is impacted by solution properties and can be decreased with the addition of salt. We studied SDS crystallization at liquid/vapor interfaces from solutions at high ionic strength (sodium chloride). We show that the surfactant crystals at the surface grow from adsorbed SDS molecules, as evidenced by the preferential orientation of the crystals identified by using grazing incidence X-ray diffraction. We find a unique time scale for the crystal growth from the evolution of structure, surface tension, and visual inspection, which can be controlled through varying the SDS or NaCl concentrations.

4.
Small Methods ; : e2301369, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085685

ABSTRACT

Imogolite nanotubes (INTs) are predicted as a unique 1D material with spatial separation of conduction and valence band edges but their large band gaps have inhibited their use as photocatalysts. The first step toward using these NTs in photocatalysis and exploiting the polarization-promoted charge separation across their walls is to reduce their band gap. Here, the modification of double-walled aluminogermanate INTs by incorporation of titanium into the NT walls is explored. The precursor ratio x = [Ti]/([Ge]+[Ti]) is modulated between 0 and 1. Structural and optical properties are determined at different scales and the photocatalytic performance is evaluated for H2 production. Although the incorporation of Ti atoms into the structure remains limited, the optimal condition is found around x = 0.4 for which the resulting NTs reveal a remarkable hydrogen production of ≈1500 µmol g-1 after 5 h for a noble metal-free photocatalyst, a 65-fold increase relative to a commercial TiO2 -P25. This is correlated to a lowering of the recombination rate of photogenerated charge carriers for the most active structures. These results confirm the theoretical predictions regarding the potential of modified INTs as photoactive nanoreactors and pave the way for investigating and exploiting their polarization properties for energy applications.

5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675274

ABSTRACT

Due to their flexible composition, large surface areas, versatile surface properties, and degradability, nanoscale metal organic frameworks (nano MOFs) are drawing significant attention in nanomedicine. In particular, iron trimesate MIL-100 (Fe) is studied extensively in the drug delivery field. Nanosized MIL-100 (Fe) are obtained mostly by microwave-assisted synthesis. Simpler, room-temperature (RT) synthesis methods attract growing interest and have scale-up potential. However, the preparation of RT MIL100 is still very challenging because of the high tendency of the nanoparticles to aggregate during their synthesis, purification and storage. To address this issue, we prepared RT MIL100 using acetic acid as a modulator and used non-toxic cyclodextrin-based coatings to ensure stability upon storage. Hydrodynamic diameters less than 100 nm were obtained after RT synthesis, however, ultrasonication was needed to disaggregate the nanoparticles after their purification by centrifugation. The model drug adenosine monophosphate (AMP) was successfully encapsulated in RT MIL100 obtained using acetic acid as a modulator. The coated RT MIL100 has CD-exhibited degradability, good colloidal stability, low cytotoxicity, as well as high drug payload efficiency. Further studies will focus on applications in the field of cancer therapy.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Acetic Acid , Temperature , Drug Delivery Systems
6.
Amino Acids ; 54(8): 1123-1133, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35296914

ABSTRACT

It is assumed that genetic diseases affecting the metabolism of cysteine and the kidney function lead to two different kinds of pathologies, namely cystinuria and cystinosis whereby generate L-cystine crystals. Recently, the presence of L-cysteine crystal has been underlined in the case of cystinosis. Interestingly, it can be strikingly seen that cystine ([-S-CH2-CH-(NH2)-COOH]2) consists of two cysteine (C3H7NO2S) molecules connected by a disulfide (S-S) bond. Therefore, the study of cystine and cysteine is important for providing a better understanding of cystinuria and cystinosis. In this paper, we elucidate the discrepancy between L-cystine and L-cysteine by investigating the theoretical and experimental infrared spectra (IR), X-ray diffraction (XRD) as well as Raman spectra aiming to obtain a better characterization of abnormal deposits related to these two genetic pathologies.


Subject(s)
Cystinosis , Cystinuria , Cysteine/chemistry , Cystine/chemistry , Disulfides , Humans
7.
J Gerontol A Biol Sci Med Sci ; 77(1): 27-32, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34331540

ABSTRACT

Chronic wounds, including leg ulcers, constitute an important medical problem among older patients. Dystrophic calcifications (DC) are associated with a variety of disorders, including leg ulcers. The aim of this study was to report the clinical and biological characteristics of older patients with DC in leg ulcers and to determine the morphology and chemical composition of these calcifications. We conducted a prospective monocentric study in our Geriatric-Wound and Healing ward, Rothschild Hospital, Paris, from January 2018 to December 2019. Patients with leg ulcers were screened for DC by palpation. Patients' clinical, biological, and radiological findings were collected. DC morphology was analyzed using field-emission scanning electron microscopy and chemical composition was analyzed using µFourier transform infra-red spectroscopy and X-ray Fluorescence. Ten (7%) of the 143 patients hospitalized for leg ulcers presented DC. Older patients with DC were more likely to have leg ulcers with venous insufficiency (p = .015), colonized by Pseudomonas aeruginosa (p = .026), with a longer healing evolution (p = .0072) and hypercalcemia (p = .041). Five DC were extracted from ulcers: 2 presented 500 nm lacunar spheres and intermingled fibrils of about 10 nm in diameter, consistent with bacterial and biofilm imprints. DC were always composed of calcium-phosphate apatite and associated to the presence of zinc. Our analyses were consistent with the involvement of microorganisms and inflammatory process in DC formation. Early management of venous insufficiency, treatment of chronic bacterial colonization and use of calcium-solubilizing drugs seem to be rational strategies for calcified leg ulcer management in older patients.


Subject(s)
Leg Ulcer , Varicose Ulcer , Venous Insufficiency , Aged , Calcium , Humans , Prospective Studies , Varicose Ulcer/drug therapy , Varicose Ulcer/microbiology
8.
Environ Sci Technol ; 54(18): 11173-11181, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32808772

ABSTRACT

The fate of plastic waste is a pressing issue since it forms a visible and long-lived reminder of the environmental impact of consumer habits. In this study, we examine the structural changes in the lamellar arrangements of semicrystalline polyethylene (PE) packaging waste with the aim of understanding the physical mechanisms of embrittlement in PE exposed to the marine environment. PE microplastics and macroplastics from identifiable PE packaging were collected in the Atlantic Ocean and compared to new PE boxes. Several experimental techniques interrogate the effects of environmental exposure on their bulk and surface properties. Size exclusion chromatography determines the molecular weight distribution of the PE polymer chains and differential scanning calorimetry gives the crystallinity. Small- and wide-angle X-ray scattering examines the packing of PE chains into semicrystalline lamellae. Longitudinal acoustic mode Raman spectroscopy provides a complementary measurement of the length of PE polymer chains extending through the crystalline lamellar domains. While there is a high degree of uncertainty in the time scale for the changes, the overall picture at the molecular scale is that although PE becomes more crystalline with environmental exposure, the lamellar order present in new packing boxes is disrupted by the weathering process. This process has important implications for embrittlement and subsequent degradation.


Subject(s)
Plastics , Water Pollutants, Chemical , Atlantic Ocean , Environmental Monitoring , Polyethylene/analysis , Water Pollutants, Chemical/analysis
9.
J Colloid Interface Sci ; 580: 275-285, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32688120

ABSTRACT

HYPOTHESIS: Synthetic imogolite nanotubes form stable colloidal dispersions that may also exhibit a rich liquid-crystalline phase behavior according to the nanotube length to diameter ratio. Anisometric double-walled aluminogermanate nanotubes are now readily available through hydrothermal treatment of germanium and aluminum precursors. This work aims to assess how the self-organization behavior of these nanotubes is influenced by the nature of the precursors. EXPERIMENTS: Five different samples were synthesized by changing the precursors involved in the formation of either inner or outer walls, then fully characterized. From series of aqueous dispersions prepared by osmotic stress, we evaluated the phase behavior by coupling polarized optical observations and small-angle X-ray scattering. FINDINGS: The formation of anisometric nanotubes is achieved whatever the initial conditions. Their structural properties are however affected by the nature of the aluminum salt. For nanotubes synthesized with aluminum perchlorate, the dispersions present an isotropic-to-columnar phase transition with a self-organization of the nanotubes over large distances. By contrast, nanotubes synthesized with chloride and nitrate salts form only nematic or isotropic liquids and tend to group together in bi-dimensional rafts. We suggest that the different phase behaviors are related at the first order to the presence of structural vacancies in the nanotube walls.

10.
ACS Nano ; 14(5): 5570-5580, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32255336

ABSTRACT

The assembly of one-dimensional nanomaterials into macroscopic fibers can improve mechanical as well as multifunctional performance. Double-walled aluminogermanate imogolite nanotubes are geo-inspired analogues of carbon nanotubes, synthesized at low temperature, with complementary properties. Here, continuous imogolite-based fibers are wet-spun within a poly(vinyl alcohol) matrix. The lyotropic liquid crystallinity of the system produces highly aligned fibers with tensile stiffness and strength up to 24.1 GPa (14.1 N tex-1) and 0.8 GPa (0.46 N tex-1), respectively. Significant enhancements over the pure polymer control are quantitatively attributed to both matrix refinement and direct nanoscale reinforcement, by fitting an analytical model. Most intriguingly, imogolite-based fibers show a high degree of healability via evaporation-induced self-assembly, recovering up to 44% and 19% of the original fiber tensile stiffness and strength, respectively. This recovery at high absolute strength highlights a general strategy for the development of high-performance healable fibers relevant to composite structures and other applications.

11.
Nanoscale Adv ; 2(5): 1869-1877, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132525

ABSTRACT

By combined use of wide-angle X-ray scattering, thermo-gravimetric analysis, inelastic neutron scattering, density functional theory and density functional theory molecular dynamics simulations, we investigate the structure, dynamics and stability of the water wetting-layer in single-walled aluminogermanate imogolite nanotubes (SW Ge-INTs): an archetypal system for synthetically controllable and monodisperse nano-reactors. We demonstrate that the water wetting-layer is strongly bound and solid-like up to 300 K under atmospheric pressure, with dynamics markedly different from that of bulk water. Atomic-scale characterisation of the wetting-layer reveals organisation of the H2O molecules in a curved triangular sublattice stabilised by the formation of three H-bonds to the nanotube's inner surface, with covalent interactions sufficiently strong to promote energetically favourable decoupling of the H2O molecules in the adlayer. The evidenced changes in the local composition, structure, electrostatics and dynamics of the Ge-INT's inner surface upon the formation of the solid wetting-layer demonstrate solvent-mediated functionalisation of the nanotube's cavity at room temperature and pressure, suggesting new strategies for the design of nano-rectors towards potential control of chemical reactivity in nano-confined volumes.

12.
PLoS One ; 14(10): e0224138, 2019.
Article in English | MEDLINE | ID: mdl-31648281

ABSTRACT

Thyroid calcification is frequent in thyroid nodules. The aim of our study was to evaluate the prevalence of calcifications in thyroid tissue samples of patients with various thyroid diseases, and to identify their composition according to their localization. Among 50 thyroid samples included, 56% were malignant (papillary carcinoma) and 44% were benign (adenoma, multinodular goiter, Graves' disease, sarcoidosis). Calcifications were found in 95% of samples using polarised light microscopy, whereas only 12% were described in initial pathological reports. Three types were individualised and analyzed by infrared spectrometry (µFTIR): colloid calcifications composed of calcium oxalate, capsular calcifications and psammoma bodies, both composed of calcium phosphate. Of notice, psammoma bodies characterized by FE-SEM were composed of concentric structure suggesting a slow process for crystal deposition. Calcium phosphates were found only in malignant samples whereas calcium oxalate was not associated with a define pathology. Proliferation assessed by KI67 staining was high (33% of positive follicles), and RUNX2, OPN, and CD44 positive staining were detected in thyrocytes with a broad variation between samples. However, thyrocyte proliferation and differentiation markers were not associated with the number of crystals. TRPV5 and CaSR expression was also detected in thyrocytes. mRNA transcripts expression was confirmed in a subgroup of 10 patients, altogether with other calcium transporters such as PMCA1 or Cav1.3. Interestingly, TRPV5 mRNA expression was significantly associated with number of colloid calcifications (rho = -0.72; p = 0.02). The high prevalence of calcium oxalate crystals within colloid gel raises intriguing issues upon follicle physiology for calcium and oxalate transport.


Subject(s)
Calcinosis/epidemiology , Calcinosis/pathology , Carcinoma, Papillary/physiopathology , Thyroid Neoplasms/physiopathology , Thyroid Nodule/physiopathology , Adult , Case-Control Studies , Female , France/epidemiology , Humans , Incidence , Male , Middle Aged
13.
Langmuir ; 35(38): 12451-12459, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31475826

ABSTRACT

In this article, we revisit the colloidal stability of clay imogolite nanotubes by studying the effect of electrostatic interactions on geo-inspired synthetic nanotubes in aqueous dispersions. The nanotubes in question are double-walled aluminogermanate imogolite nanotubes (Ge-DWINTs) with a well-defined diameter (4.3 nm) and with an aspect ratio around 4. Surface charge properties are assessed by electrophoretic measurements, revealing that the outer surfaces of Ge-DWINT are positively charged up to high pH values. A series of Ge-DWINT dispersions have been prepared by osmotic stress to control both the ionic strength of the dispersion and the volume fraction in nanotubes. Optical observations coupled to small and wide-angle X-ray scattering (SAXS/WAXS) experiments allow us to unravel different nanotube organizations. At low ionic strength (IS < 10-2 mol L-1), Ge-DWINTs are fully dispersed in water while they form an arrested gel phase above a given concentration threshold, which shifts toward higher volume fraction with increasing ionic strength. The swelling law, derived from the evolution of the mean intertube distance as a function of the nanotube concentration, evidences a transition from isotropic swelling at low volume fractions to one-dimensional swelling at higher volume fractions. These results show that the colloidal stability of Ge-DWINT is driven by repulsive interactions for ionic strengths lower than 10-2 mol L-1. By contrast, higher salt concentrations lead to attractive interactions that destabilize the colloid suspension, inducing nanotube coagulation into larger structures that settle over time or form opaque gels. Detailed simulations of the WAXS diagram reveal that aggregates are mainly formed by an isotropic distribution of small bundles (less than four nanotubes) in which the nanotubes organized themselves in parallel orientation. Altogether, these measurements allow us to give the first overview of the phase diagram of colloidal dispersions based on geo-inspired imogolite-like nanotubes.

15.
Nat Commun ; 9(1): 2033, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29789570

ABSTRACT

Determination of the atomic structure of inorganic single-walled nanotubes with complex stoichiometry remains elusive due to the too many atomic coordinates to be fitted with respect to X-ray diffractograms inherently exhibiting rather broad features. Here we introduce a methodology to reduce the number of fitted variables and enable resolution of the atomic structure for inorganic nanotubes with complex stoichiometry. We apply it to recently synthesized methylated aluminosilicate and aluminogermanate imogolite nanotubes of nominal composition (OH)3Al2O3Si(Ge)CH3. Fitting of X-ray scattering diagrams, supported by Density Functional Theory simulations, reveals an unexpected rolling mode for these systems. The transferability of the approach opens up for improved understanding of structure-property relationships of inorganic nanotubes to the benefit of fundamental and applicative research in these systems.

16.
Langmuir ; 33(29): 7305-7311, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28669193

ABSTRACT

Foams are ultrastable when all the aging processes arrest. We make such foams by precipitating sodium dodecyl sulfate with potassium chloride during the foaming process. The precipitate crystals adsorb onto the bubble surfaces to arrest coarsening and stop drainage by blocking in the interstices around the bubbles. However, if the concentration of SDS is too high, the foams are no longer ultrastable. The transition is sudden and corresponds to the point at which significant dodecyl sulfate remains in solution. The presence of the noncrystallized surfactant allows the foam to coarsen leading to the eventual disappearance of the foams, even if the crystals in the continuous phase can still block drainage. The transition occurs as the concentration of nonsolubilized KCl becomes higher than the concentration of SDS, giving us a linear stability boundary. The system offers an interesting alternative to other types of particles because the surfactant crystals break and reform as the temperature is cycled, which makes for reusable solutions and stimulable foams.

17.
Front Physiol ; 8: 267, 2017.
Article in English | MEDLINE | ID: mdl-28515694

ABSTRACT

Background and objective:FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.

18.
J Pathol Clin Res ; 2(3): 175-86, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27499926

ABSTRACT

Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

19.
J Am Chem Soc ; 138(33): 10437-43, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27455124

ABSTRACT

A groundbreaking discovery in nanofluidics was the observation of the tremendously enhanced water permeability of carbon nanotubes, those iconic objects of nanosciences. The origin of this phenomenon is still a subject of controversy. One of the proposed explanations involves dramatic modifications of the H-bond network of nanoconfined water with respect to that of bulk water. Infrared spectroscopy is an ideal technique to follow modifications of this network through the inter- and intramolecular bonds of water molecules. Here we report the first infrared study of water uptake at controlled vapor pressure in single walled carbon nanotubes with diameters ranging from 0.7 to 2.1 nm. It reveals a predominant contribution of loose H bonds even for fully hydrated states, irrespective of the nanotube size. Our results show that, while the dominating loosely bond signature is attributed to a one-dimensional chain structure for small diameter nanotubes, this feature also results from a water layer with "free" OH (dangling) bonds facing the nanotube wall for larger diameter nanotubes. These experimental findings provide a solid reference for further modeling of water behavior in hydrophobic nanochannels.

20.
Nat Commun ; 7: 10271, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26728415

ABSTRACT

Liquid crystals have found wide applications in many fields ranging from detergents to information displays and they are also increasingly being used in the 'bottom-up' self-assembly approach of material nano-structuration. Moreover, liquid-crystalline organizations are frequently observed by biologists. Here we show that one of the four major lyotropic liquid-crystal phases, the columnar one, is much more stable on dilution than reported so far in literature. Indeed, aqueous suspensions of imogolite nanotubes, at low ionic strength, display the columnar liquid-crystal phase at volume fractions as low as ∼ 0.2%. Consequently, due to its low visco-elasticity, this columnar phase is easily aligned in an alternating current electric field, in contrast with usual columnar liquid-crystal phases. These findings should have important implications for the statistical physics of the suspensions of charged rods and could also be exploited in materials science to prepare ordered nanocomposites and in biophysics to better understand solutions of rod-like biopolymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...