Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17512, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845318

ABSTRACT

Human-robot interaction is a rapidly developing field and robots have been taking more active roles in our daily lives. Patient care is one of the fields in which robots are becoming more present, especially for people with disabilities. People with neurodegenerative disorders might not consciously or voluntarily produce movements other than those involving the eyes or eyelids. In this context, Brain-Computer Interface (BCI) systems present an alternative way to communicate or interact with the external world. In order to improve the lives of people with disabilities, this paper presents a novel BCI to control an assistive robot with user's eye artifacts. In this study, eye artifacts that contaminate the electroencephalogram (EEG) signals are considered a valuable source of information thanks to their high signal-to-noise ratio and intentional generation. The proposed methodology detects eye artifacts from EEG signals through characteristic shapes that occur during the events. The lateral movements are distinguished by their ordered peak and valley formation and the opposite phase of the signals measured at F7 and F8 channels. This work, as far as the authors' knowledge, is the first method that used this behavior to detect lateral eye movements. For the blinks detection, a double-thresholding method is proposed by the authors to catch both weak blinks as well as regular ones, differentiating itself from the other algorithms in the literature that normally use only one threshold. Real-time detected events with their virtual time stamps are fed into a second algorithm, to further distinguish between double and quadruple blinks from single blinks occurrence frequency. After testing the algorithm offline and in realtime, the algorithm is implemented on the device. The created BCI was used to control an assistive robot through a graphical user interface. The validation experiments including 5 participants prove that the developed BCI is able to control the robot.


Subject(s)
Brain-Computer Interfaces , Robotics , Humans , Artifacts , Electroencephalography/methods , Eye Movements , Algorithms , User-Computer Interface
2.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Article in English | MEDLINE | ID: mdl-36176166

ABSTRACT

Exoskeletons for the low-back have great potential as tools to both prevent low-back pain for healthy subjects and limit its impact for chronic patients. Here, we show a proof-of-concept evaluation of our low-back exoskeleton. Its peculiar feature is the backbone-tracking kinematic structure that allows tracking the motion of the human spine while bending the trunk. This mechanism is implemented with a rigid-yet-elongating structure that does not hinder nor constrain the motion of the wearer while providing assistance. In this work, we show the first prototype we manufactured. It is equipped with a traction spring to assist the wearer during trunk flexion/extension. Then, we report the results of a preliminary test with healthy subjects. We measured a reduction of the mean absolute value for some target muscles - including the erector spinae - when using the exoskeleton for payload manipulation tasks. This was achieved without affecting task performance, measured as task time and joints range of motion. We believe these preliminary results are encouraging, paving the way for a broader experimental campaign to evaluate our exoskeleton.


Subject(s)
Exoskeleton Device , Low Back Pain , Biomechanical Phenomena , Electromyography , Humans , Low Back Pain/prevention & control , Muscle, Skeletal , Proof of Concept Study , Range of Motion, Articular , Spine
3.
Sci Rep ; 12(1): 4481, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35296691

ABSTRACT

Service robotics is a fast-developing sector, requiring embedded intelligence into robotic platforms to interact with the humans and the surrounding environment. One of the main challenges in the field is robust and versatile manipulation in everyday life activities. An appealing opportunity is to exploit compliant end-effectors to address the manipulation of deformable objects. However, the intrinsic compliance of such grippers results in increased difficulties in grasping control. Within the described context, this work addresses the problem of optimizing the grasping of deformable objects making use of a compliant, under-actuated, sensorless robotic hand. The main aim of the paper is, therefore, finding the best position and joint configuration for the mentioned robotic hand to grasp an unforeseen deformable object based on collected RGB image and partial point cloud. Due to the complex grasping dynamics, learning-from-simulations approaches (e.g., Reinforcement Learning) are not effective in the faced context. Thus, trial-and-error-based methodologies have to be exploited. In order to save resources, a samples-efficient approach has to be employed. Indeed, a Bayesian approach to address the optimization of the grasping strategy is proposed, enhancing it with transfer learning capabilities to exploit the acquired knowledge to grasp (partially) new objects. A PAL Robotics TIAGo (a mobile manipulator with a 7-degrees-of-freedom arm and an anthropomorphic underactuated compliant hand) has been used as a test platform, executing a pouring task while manipulating plastic (i.e., deformable) bottles. The sampling efficiency of the data-driven learning is shown, compared to an evenly spaced grid sampling of the input space. In addition, the generalization capability of the optimized model is tested (exploiting transfer learning) on a set of plastic bottles and other liquid containers, achieving a success rate of the 88%.


Subject(s)
Hand Strength , Robotics , Bayes Theorem , Hand , Humans , Plastics , Robotics/methods
4.
Front Robot AI ; 8: 745018, 2021.
Article in English | MEDLINE | ID: mdl-34950707

ABSTRACT

Technology-supported rehabilitation therapy for neurological patients has gained increasing interest since the last decades. The literature agrees that the goal of robots should be to induce motor plasticity in subjects undergoing rehabilitation treatment by providing the patients with repetitive, intensive, and task-oriented treatment. As a key element, robot controllers should adapt to patients' status and recovery stage. Thus, the design of effective training modalities and their hardware implementation play a crucial role in robot-assisted rehabilitation and strongly influence the treatment outcome. The objective of this paper is to provide a multi-disciplinary vision of patient-cooperative control strategies for upper-limb rehabilitation exoskeletons to help researchers bridge the gap between human motor control aspects, desired rehabilitation training modalities, and their hardware implementations. To this aim, we propose a three-level classification based on 1) "high-level" training modalities, 2) "low-level" control strategies, and 3) "hardware-level" implementation. Then, we provide examples of literature upper-limb exoskeletons to show how the three levels of implementation have been combined to obtain a given high-level behavior, which is specifically designed to promote motor relearning during the rehabilitation treatment. Finally, we emphasize the need for the development of compliant control strategies, based on the collaboration between the exoskeleton and the wearer, we report the key findings to promote the desired physical human-robot interaction for neurorehabilitation, and we provide insights and suggestions for future works.

5.
J Med Internet Res ; 23(5): e29058, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33999838

ABSTRACT

BACKGROUND: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling. OBJECTIVE: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia. METHODS: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO2/FiO2 ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naïve Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naïve Bayes algorithm with 14 features chosen a priori. RESULTS: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naïve Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively. CONCLUSIONS: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia.


Subject(s)
COVID-19/mortality , Machine Learning , Bayes Theorem , COVID-19/pathology , Cohort Studies , Electronic Health Records , Female , Humans , Italy/epidemiology , Male , Research Design , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
6.
Front Robot AI ; 6: 75, 2019.
Article in English | MEDLINE | ID: mdl-33501090

ABSTRACT

Human-robot cooperation is increasingly demanded in industrial applications. Many tasks require the robot to enhance the capabilities of humans. In this scenario, safety also plays an important role in avoiding any accident involving humans, robots, and the environment. With this aim, the paper proposes a cooperative fuzzy-impedance control with embedded safety rules to assist human operators in heavy industrial applications while manipulating unknown weight parts. The proposed methodology is composed by four main components: (i) an inner Cartesian impedance controller (to achieve the compliant robot behavior), (ii) an outer fuzzy controller (to provide the assistance to the human operator), (iii) embedded safety rules (to limit force/velocity during the human-robot interaction enhancing safety), and (iv) a neural network approach (to optimize the control parameters for the human-robot collaboration on the basis of the target indexes of assistance performance defined for this purpose). The main achieved result refers to the capability of the controller to deal with uncertain payloads while assisting and empowering the human operator, both embedding in the controller safety features at force and velocity levels and minimizing the proposed performance indexes. The effectiveness of the proposed approach is verified with a KUKA iiwa 14 R820 manipulator in an experimental procedure where human subjects evaluate the robot performance in a collaborative lifting task of a 10 kg part.

SELECTION OF CITATIONS
SEARCH DETAIL
...