Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8014, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580729

ABSTRACT

Extreme atmospheric-marine events, known as medicanes (short for "Mediterranean hurricanes"), have affected the Mediterranean basin in recent years, resulting in extensive coastal flooding and storm surges, and have occasionally been responsible for several casualties. Considering that the development mechanism of these events is similar to tropical cyclones, it is plausible that these phenomena are strongly affected by sea surface temperatures (SSTs) during their development period (winter and autumn seasons). In this study, we compared satellite data and the numerical reanalysis of SSTs from 1969 to 2023 with in situ data from dataloggers installed at different depths off the coast of southeastern Sicily as well as from data available on Argo floats on the Mediterranean basin. A spectral analysis was performed using a continuous wavelet transform (CWT) for each SST time series to highlight the changes in SSTs prior to the occurrence of Mediterranean Hurricanes as well as the energy content of the various frequencies of the SST signal. The results revealed that decreases in SST occurred prior to the formation of each Mediterranean hurricane, and that this thermal drop phenomenon was not observed in intense extra-tropical systems. The spectral analyses revealed that high CWT coefficients representing high SST energy contents were observed before the occurrence of a Mediterranean hurricane. This information may provide a useful fingerprint for distinguishing Mediterranean hurricanes from common seasonal storms at the onset of these events.

2.
Sci Rep ; 13(1): 1683, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717604

ABSTRACT

Coral reefs offer natural coastal protection by attenuating incoming waves. Here we combine unique coral disturbance-recovery observations with hydrodynamic models to quantify how structural complexity dissipates incoming wave energy. We find that if the structural complexity of healthy coral reefs conditions is halved, extreme wave run-up heights that occur once in a 100-years will become 50 times more frequent, threatening reef-backed coastal communities with increased waves, erosion, and flooding.


Subject(s)
Anthozoa , Coral Reefs , Animals , Floods , Hydrodynamics , Ecosystem
3.
Commun Earth Environ ; 4(1): 328, 2023.
Article in English | MEDLINE | ID: mdl-38665194

ABSTRACT

Understanding sea level during the peak of the Last Interglacial (125,000 yrs ago) is important for assessing future ice-sheet dynamics in response to climate change. The coasts and continental shelves of northeastern Australia (Queensland) preserve an extensive Last Interglacial record in the facies of coastal strandplains onland and fossil reefs offshore. However, there is a discrepancy, amounting to tens of meters, in the elevation of sea-level indicators between offshore and onshore sites. Here, we assess the influence of geophysical processes that may have changed the elevation of these sea-level indicators. We modeled sea-level change due to dynamic topography, glacial isostatic adjustment, and isostatic adjustment due to coral reef loading. We find that these processes caused relative sea-level changes on the order of, respectively, 10 m, 5 m, and 0.3 m. Of these geophysical processes, the dynamic topography predictions most closely match the tilting observed between onshore and offshore sea-level markers.

4.
Open Res Eur ; 3: 114, 2023.
Article in English | MEDLINE | ID: mdl-38799381

ABSTRACT

In this paper, we present WALIS Dashboard, an open-access interface to the World Atlas of Last Interglacial Shorelines (WALIS), which was developed and compiled thanks to funding from the European Research Council. WALIS is a database that includes thousands of samples (dated with different radiometric methods) and sea-level indicators formed during the Last Interglacial (~80 to 130 ka). The WALIS Dashboard was coded in R (shiny app), and allows querying a simplified version of WALIS by either geographic extent or by attributes. The user can then download the queried data and perform simple and reproducible data analysis. The WALIS Dashboard can be used both online and offline.


Tide gauges and satellites provide reliable measurements of sea-level changes since the beginning of the 20th century. To estimate sea-level changes before this period, we rely on sea-level indicators, i.e., geological features that were formed in close connection with sea level in the past, such as fossil shallow-water coral reefs or cemented beach deposits. Similar to tide gauge and satellite data, data on sea-level indicators are collected and standardised in databases, which are then made available to the scientific community (and the public at large) for further analysis. In this work, we present an open-source application that allows exploring, analysing, and downloading sea-level indicators included in the World Atlas of Last Interglacial Shorelines (WALIS), a paleo sea-level database compiled thanks to funding from the European Research Council. The application aims to facilitate access to this information for researchers, students, and citizens by creating more interactive and intuitive ways to explore the scientific information contained in WALIS.

6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34373328

ABSTRACT

During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth's rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.

7.
PLoS One ; 16(6): e0250208, 2021.
Article in English | MEDLINE | ID: mdl-34106961

ABSTRACT

Drawing on Jakarta, Metro Manila and Singapore as case studies, we explore the paradox of slow political action in addressing subsiding land, particularly along high-density urban coastlines with empirical insights from coastal geography, geodesy analysis, geology, and urban planning. In framing land subsidence as a classic 'wicked' policy problem, and also as a hybrid geological and anthropogenic phenomenon that is unevenly experienced across urban contexts, the paper uses a three-step analysis. First, satellite-derived InSAR maps are integrated with Sentinel-1A data in order to reveal the socio-temporal variability of subsidence rates which in turn pose challenges in uniformly applying regulatory action. Second, a multi-sectoral mapping of diverse policies and practices spanning urban water supply, groundwater extraction, land use zoning, building codes, tenurial security, and land reclamation reveal the extent to which the broader coastal governance landscape remains fragmented and incongruous, particularly in arresting a multi-dimensional phenomenon such as subsidence. Finally, in reference to distinct coastal identities of each city-the 'Sinking Capital' (Jakarta), 'Fortress Singapore', and the 'Disaster Capital' (Manila) the paper illustrates how land subsidence is portrayed across the three metropolises in markedly similar ways: as a reversible, quasi-natural, and/or a highly individualized problem.


Subject(s)
Environmental Policy , Natural Resources , Urban Renewal , Asia, Southeastern , Groundwater , Humans , Indonesia , Philippines , Singapore
8.
Nat Commun ; 12(1): 4013, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188029

ABSTRACT

Future warming in the Mediterranean is expected to significantly exceed global values with unpredictable implications on the sea-level rise rates in the coming decades. Here, we apply an empirical-Bayesian spatio-temporal statistical model to a dataset of 401 sea-level index points from the central and western Mediterranean and reconstruct rates of sea-level change for the past 10,000 years. We demonstrate that the mean rates of Mediterranean industrial-era sea-level rise have been significantly faster than any other period since ~4000 years ago. We further highlight a previously unrecognized variability in Mediterranean sea-level change rates. In the Common Era, this variability correlates with the occurrence of major regional-scale cooling/warming episodes. Our data show a sea-level stabilization during the Late Antique Little Ice Age cold event, which interrupted a general rising trend of ~0.45 mm a-1 that characterized the warming episodes of the Common Era. By contrast, the Little Ice Age cold event had only minor regional effects on Mediterranean sea-level change rates.

9.
Glob Chang Biol ; 27(11): 2623-2632, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33749949

ABSTRACT

Sea-level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3 ) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community-level CaCO3 production. By combining colony-level physiology and long-term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large-scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.


Subject(s)
Anthozoa , Coral Reefs , Animals , Carbonates , Climate Change , Ecosystem
10.
Nat Commun ; 12(1): 1199, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623046

ABSTRACT

The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) - an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ18O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed independently of far-field sea level and δ18O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ18O and sea level may be more complex than assumed.

11.
Data Brief ; 27: 104600, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31673594

ABSTRACT

The SEAMIS database (Mendeley data repository; https://doi.org/10.17632/wp4ctb4667.1) contains 546 relative sea-level indicators from 31 different studies within the broader Southeast Asian region including the Maldives, India and Sri Lanka. Here we compare quality-controlled and site-specific relative sea-level data from 23 studies from the SEAMIS database to a suite of ICE-5G glacial isostatic adjustment models. The relation between robust and, if applicable, tectonically corrected relative sea-level data with the broad predictions of glacial isostatic adjustment models is interpreted and discussed in the article "Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database" [1] in Quaternary Science Reviews.

12.
Sci Adv ; 4(2): eaao4350, 2018 02.
Article in English | MEDLINE | ID: mdl-29503866

ABSTRACT

Coral reefs are diverse ecosystems that support millions of people worldwide by providing coastal protection from waves. Climate change and human impacts are leading to degraded coral reefs and to rising sea levels, posing concerns for the protection of tropical coastal regions in the near future. We use a wave dissipation model calibrated with empirical wave data to calculate the future increase of back-reef wave height. We show that, in the near future, the structural complexity of coral reefs is more important than sea-level rise in determining the coastal protection provided by coral reefs from average waves. We also show that a significant increase in average wave heights could occur at present sea level if there is sustained degradation of benthic structural complexity. Our results highlight that maintaining the structural complexity of coral reefs is key to ensure coastal protection on tropical coastlines in the future.

14.
Proc Natl Acad Sci U S A ; 114(46): 12144-12149, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087331

ABSTRACT

As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

15.
Sci Rep ; 7(1): 16241, 2017 11 24.
Article in English | MEDLINE | ID: mdl-29176722

ABSTRACT

The study of past sea levels relies largely on the interpretation of sea-level indicators. Palaeo tidal notches are considered as one of the most precise sea-level indicators as their formation is closely tied to the local tidal range. We present geometric measurements of modern and palaeo (Marine Isotope Stage (MIS) 5e) tidal notches on Bonaire (southern Caribbean Sea) and results from two tidal simulations, using the present-day bathymetry and a palaeo-bathymetry. We use these two tools to investigate changes in the tidal range since MIS 5e. Our models show that the tidal range changes most significantly in shallow areas, whereas both, notch geometry and models results, suggest that steeper continental shelves, such as the ones bordering the island of Bonaire, are less affected to changes in tidal range in conditions of MIS 5e sea levels. We use our data and results to discuss the importance of considering changes in tidal range while reconstructing MIS 5e sea level histories, and we remark that it is possible to use hydrodynamic modelling and notch geometry as first-order proxies to assess whether, in a particular area, tidal range might have been different in MIS 5e with respect to today.

16.
Sci Adv ; 3(7): e1700457, 2017 07.
Article in English | MEDLINE | ID: mdl-28695210

ABSTRACT

Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

17.
Mar Pollut Bull ; 98(1-2): 188-200, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26228070

ABSTRACT

Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet.


Subject(s)
Anthozoa , Coral Reefs , Ecosystem , Tsunamis , Animals , Indian Ocean Islands , Mortality , Time Factors
18.
PLoS One ; 10(2): e0118581, 2015.
Article in English | MEDLINE | ID: mdl-25714413

ABSTRACT

Understanding the effects of environmental change on ecosystems requires the identification of baselines that may act as reference conditions. However, the continuous change of these references challenges our ability to define the true natural status of ecosystems. The so-called sliding baseline syndrome can be overcome through the analysis of quantitative time series, which are, however, extremely rare. Here we show how combining historical quantitative data with descriptive 'naturalistic' information arranged in a chronological chain allows highlighting long-term trends and can be used to inform present conservation schemes. We analysed the long-term change of a coralligenous reef, a marine habitat endemic to the Mediterranean Sea. The coralligenous assemblages of Mesco Reef (Ligurian Sea, NW Mediterranean) have been studied, although discontinuously, since 1937 thus making available both detailed descriptive information and scanty quantitative data: while the former was useful to understand the natural history of the ecosystem, the analysis of the latter was of paramount importance to provide a formal measure of change over time. Epibenthic assemblages remained comparatively stable until the 1990s, when species replacement, invasion by alien algae, and biotic homogenisation occurred within few years, leading to a new and completely different ecosystem state. The shift experienced by the coralligenous assemblages of Mesco Reef was probably induced by a combination of seawater warming and local human pressures, the latter mainly resulting in increased water turbidity; in turn, cumulative stress may have favoured the establishment of alien species. This study showed that the combined analysis of quantitative and descriptive historical data represent a precious knowledge to understand ecosystem trends over time and provide help to identify baselines for ecological management.


Subject(s)
Coral Reefs , Ecosystem , Biodiversity , Climate Change , Conservation of Natural Resources , Environment , Mediterranean Sea
19.
Mar Pollut Bull ; 75(1-2): 157-167, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23953894

ABSTRACT

Making nature's value visible to humans is a key issue for the XXI century and it is crucial to identify and measure natural capital to incorporate benefits or costs of changes in ecosystem services into policy. Emergy analysis, a method able to analyze the overall functioning of a system, was applied to reckon the value of main ecosystem services provided by Posidonia oceanica, a fragile and precious Mediterranean seagrass ecosystem. Estimates, based on calculation of resources employed by nature, resulted in a value of 172 € m(-2)a(-1). Sediment retained by meadow is most relevant input, composing almost the whole P. oceanica value. Remarks about economic losses arising from meadow regression have been made through a time-comparison of meadow maps. Suggested procedure represents an operative tool to provide a synthetic monetary measure of ecosystem services to be employed when comparing natural capital to human and financial capitals in a substitutability perspective.


Subject(s)
Alismatales/growth & development , Conservation of Natural Resources/methods , Conservation of Natural Resources/economics , Ecosystem , Environmental Policy , Environmental Restoration and Remediation/economics , Mediterranean Sea , Water Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...