Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 36(1): 2128-2138, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34583607

ABSTRACT

Influenza viruses represent a major threat to human health and are responsible for seasonal epidemics, along with pandemics. Currently, few therapeutic options are available, with most drugs being at risk of the insurgence of resistant strains. Hence, novel approaches targeting less explored pathways are urgently needed. In this work, we assayed a library of nitrobenzoxadiazole derivatives against the influenza virus A/Puerto Rico/8/34 H1N1 (PR8) strain. We identified three promising 4-thioether substituted nitrobenzoxadiazoles (12, 17, and 25) that were able to inhibit viral replication at low micromolar concentrations in two different infected cell lines using a haemagglutination assay. We further assessed these molecules using an In-Cell Western assay, which confirmed their potency in the low micromolar range. Among the three molecules, 12 and 25 displayed the most favourable profile of activity and selectivity and were selected as hit compounds for future optimisation studies.


Subject(s)
4-Chloro-7-nitrobenzofurazan/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , 4-Chloro-7-nitrobenzofurazan/chemical synthesis , 4-Chloro-7-nitrobenzofurazan/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
2.
Curr Opin Chem Biol ; 57: 65-74, 2020 08.
Article in English | MEDLINE | ID: mdl-32615359

ABSTRACT

Histone modifying enzymes have vital roles in the growth and survival of both parasites and humans. Targeting the epigenome can be a new strategy for the treatment of parasitic diseases. Compounds modulating histone acetylation/deacetylation have recently been reported hampering Plasmodium, Schistosoma, Leishmania, and Trypanosoma infections. Beside new histone deacetylase inhibitors, PfGCN5 and bromodomain inhibitors have been recently described to inhibit Plasmodium proliferation. Sm histone deacetylase 8 and SmSIRT2, as well as Leishmania and Trypanosoma sirtuins (SIR2rps), seem to be the most reliable targets to effectively fight the related protozoan infections. The selectivity toward parasite over mammalian cells is still an open question, and significant optimization efforts of epidrugs are still required to improve potency/selectivity and decrease toxicity. Recent reports on the alteration of cellular signaling pathways provoked by parasite infection through changes in the host acetylation/deacetylation status at gene promoters may suggest novel therapeutic strategies to treat these diseases.


Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Drug Discovery , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Parasitic Diseases/drug therapy , Acetylation/drug effects , Animals , Histones/metabolism , Humans , Molecular Targeted Therapy , Parasites/drug effects , Parasites/metabolism
3.
ACS Med Chem Lett ; 11(5): 862-868, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435397

ABSTRACT

Tankyrases (TNKSs) have recently gained great consideration as potential targets in Wnt/ß-catenin pathway-dependent solid tumors. Previously, we reported the 2-mercaptoquinazolin-4-one MC2050 as a micromolar PARP1 inhibitor. Here we show how the resolution of the X-ray structure of PARP1 in complex with MC2050, combined with the computational investigation of the structural differences between TNKSs and PARP1/2 active sites, provided the rationale for a structure-based drug design campaign that with a limited synthetic effort led to the discovery of the bis-quinazolinone 5 as a picomolar and selective TNKS2 inhibitor, endowed with antiproliferative effects in a colorectal cancer cell line (DLD-1) where the Wnt pathway is constitutively activated.

4.
ChemMedChem ; 15(7): 643-658, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32003940

ABSTRACT

LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring. Further fragments obtained by chemical manipulation applied on the TCP scaffold (compounds 4 a-i) were also prepared. When tested against LSD1, most of 1 and 3 exhibited IC50 values in the low nanomolar range, with 1 e and 3 a,d,f,g being also the most selective respect to monoamine oxidases. In MV4-11 AML and NB4 APL cells compounds 3 were the most potent, displaying up to sub-micromolar cell growth inhibition against both cell lines (3 a) or against NB4 cells (3 c). The most potent compounds in cellular assays were also able to induce the expression of LSD1 target genes, such as GFI-1b, ITGAM, and KCTD12, as functional read-out for LSD1 inhibition. Mouse and human intrinsic clearance data highlighted the high metabolic stability of compounds 3 a, 3 d and 3 g. Further studies will be performed on the new compounds 3 a and 3 c to assess their anticancer potential in different cancer contexts.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Tranylcypromine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Structure-Activity Relationship , Tranylcypromine/chemical synthesis , Tranylcypromine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...