Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 8(11)2022 11.
Article in English | MEDLINE | ID: mdl-36326655

ABSTRACT

Dinoflagellates of the genus Alexandrium are responsible for harmful algal blooms and produce paralytic shellfish toxins (PSTs). Their very large and complex genomes make it challenging to identify the genes responsible for toxin synthesis. A family-based genomic association study was developed to determine the inheritance of toxin production in Alexandrium minutum and identify genomic regions linked to this production. We show that the ability to produce toxins is inheritable in a Mendelian way, while the heritability of the toxin profile is more complex. We developed the first dinoflagellate genetic linkage map. Using this map, several major results were obtained: 1. A genomic region related to the ability to produce toxins was identified. 2. This region does not contain any polymorphic sxt genes, known to be involved in toxin production in cyanobacteria. 3. The sxt genes, known to be present in a single cluster in cyanobacteria, are scattered on different linkage groups in A. minutum. 4. The expression of two sxt genes not assigned to any linkage group, sxtI and sxtG, may be regulated by the genomic region related to the ability to produce toxins. Our results provide new insights into the organization of toxicity-related genes in A. minutum, suggesting a dissociated genetic mechanism for the production of the different analogues and the ability to produce toxins. However, most of the newly identified genes remain unannotated. This study therefore proposes new candidate genes to be further explored to understand how dinoflagellates synthesize their toxins.


Subject(s)
Dinoflagellida , Dinoflagellida/genetics , Dinoflagellida/metabolism , Marine Toxins/genetics , Marine Toxins/metabolism
2.
Harmful Algae ; 107: 101974, 2021 07.
Article in English | MEDLINE | ID: mdl-34456013

ABSTRACT

Dinoflagellates of the genus Dinophysis are the most prominent producers of Diarrhetic Shellfish Poisoning (DSP) toxins which have an impact on public health and on marine aquaculture worldwide. In particular, Dinophysis acuminata has been reported as the major DSP agent in Western Europe. Still, its contribution to DSP events in the regions of the English Channel and the Atlantic coast of France, and the role of the others species of the Dinophysis community in these areas are not as clear. In addition, species identification within the D. acuminata complex has proven difficult due to their highly similar morphological features. In the present study, 30 clonal strains of the dominant Dinophysis species have been isolated from French coasts including the English Channel (3 sites), the Atlantic Ocean (11 sites) and the Mediterranean Sea (6 sites). Morphologically, strains were identified as three species: D. acuta, D. caudata, D. tripos, as well as the D. acuminata-complex. Sequences of the ITS and LSU rDNA regions confirmed these identifications and revealed no genetic difference within the D. acuminata-complex. Using the mitochondrial gene cox1, two groups of strains differing by only one substitution were found in the D. acuminata-complex, but SEM analysis of various strains showed a large range of morphological variations. Based on geographical origin and morphology, strains of the subclade A were ascribed to 'D. acuminata' while those of the subclade B were ascribed to 'D. sacculus'. Nevertheless, the distinction into two separate species remains questionable and was not supported by our genetic data. The considerable variations observed in cultured strains suggest that physiological factors might influence cell contour and bias identification. Analyses of Dinophysis cultures from French coastal waters using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) revealed species-conserved toxin profiles for D. acuta (dinophysistoxin 2 (DTX2), okadaic acid (OA), pectenotoxin 2 (PTX2)), D. caudata (PTX2) and D. tripos (PTX2), irrespective of geographical origin (Atlantic Ocean or Mediterranean Sea). Within the D. acuminata-complex, two different toxin profiles were observed: the strains of 'D. acuminata' (subclade A) from the English Channel and the Atlantic Ocean contained only OA while strains of 'D. sacculus' (subclade B) from Mediterranean Sea/Atlantic Ocean contained PTX2 as the dominant toxin, with OA and C9-esters also being present, albeit in lower proportions. The same difference in toxin profiles between 'D. sacculus' and 'D. acuminata' was reported in several studies from Galicia (NW- Spain). This difference in toxin profiles has consequences in terms of public health, and consequently for monitoring programs. While toxin profile could appear as a reliable feature separating 'D. acuminata' from 'D. sacculus' on both French and Spanish coasts, this does not seem consistent with observations on a broader geographical scale for the D. acuminata complex, possibly due to the frequent lack of genetic characterization.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Chromatography, Liquid , Dinoflagellida/genetics , Marine Toxins/analysis , Tandem Mass Spectrometry
3.
Harmful Algae ; 103: 102028, 2021 03.
Article in English | MEDLINE | ID: mdl-33980428

ABSTRACT

Due to anthropogenic activities, associated with climate change, many freshwater ecosystems are expected to experience an increase in salinity. This phenomenon is predicted to favor the development and expansion of freshwater cyanobacteria towards brackish waters due to their transfer along the estuarine freshwater-marine continuum. Since freshwater cyanobacteria are known to produce toxins, this represents a serious threat for animal and human health. Saxitoxins (STXs) are classified among the most powerful cyanotoxins. It becomes thus critical to evaluate the capacity of cyanobacteria producing STXs to face variations in salinity and to better understand the physiological consequences of sodium chloride (NaCl) exposure, in particular on their toxicity. Laboratory experiments were conducted on three filamentous cyanobacteria species isolated from brackish (Dolichospermum sp.) and fresh waters (Aphanizomenon gracile and Cylindrospermopsis raciborskii) to determine how salinity variations affect their growth, photosynthetic activity, pigment composition, production of reactive oxygen species (ROS), synthesis of compatible solutes and STXs intracellular quotas. Salinity tolerance was found to be species-specific. Dolichospermum sp. was more resistant to salinity variations than A. gracile and C. raciborskii. NaCl variations reduced growth in all species. In A. gracile, carotenoids content was dose-dependently reduced by NaCl. By contrast, in C. raciborskii and Dolichospermum sp., variations in carotenoids content did not show obvious relationships with NaCl concentration. While in Dolichospermum sp. phycocyanin and phycoerythrin increased within the first 24 h exposure to NaCl, in both A. gracile and C. raciborskii, these pigments decreased proportionally to NaCl concentration. Low changes in salinity did not impact STXs production in A. gracile and C. raciborskii while higher increase in salinity could modify the toxin profile and content of C. raciborskii (intracellular STX decreased while dc-GTX2 increased). In estuaries, A. gracile and C. raciborskii would not be able to survive beyond the oligohaline area (i.e. salinity > 5). Conversely, in part due to its ability to accumulate compatible solutes, Dolichospermum sp. has the potential to face consequent salinity variations and to survive in the polyhaline area (at least up to salinity = 24).


Subject(s)
Cyanobacteria , Sodium Chloride , Animals , Aphanizomenon , Cylindrospermopsis , Ecosystem
4.
Harmful Algae ; 103: 102026, 2021 03.
Article in English | MEDLINE | ID: mdl-33980454

ABSTRACT

Some species of the genus Dinophysis contain Diarrhetic shellfish Poisoning (DSP) toxins and are the main threat to shellfish farming in Europe including France. Dinophysis species are known to produce two families of bioactive lipophilic toxins: (i) okadaic acid (OA) and their analogues dinophysistoxins (DTXs) and (ii) pectenotoxins (PTXs). Only six toxins (OA, DTX1, DTX2, DTX3, PTX1 and PTX2) regulated by the European Union Legislation (EC No. 15/2011; 3) are routinely monitored using targeted chemical analysis by liquid chromatography coupled to mass spectrometry (LC-MS/MS) while toxic species of Dinophysis produce many other analogues. To tentatively identify unknown toxin analogues, a recent approach (Molecular Networking, MN) was used based on fragmentation data obtained by untargeted high resolution mass spectrometry (HRMS). An optimization of the data-dependent LC-HRMS/MS acquisition conditions was conducted to obtain more informative networks. The MN was applied to provide an overview of the chemical diversity of four strains belonging to three major Dinophysis species isolated from French coastal waters (D. acuta, D. caudata and the "D. acuminata complex" species D. acuminata and D. sacculus). This approach highlighted species-specific chemical patterns and also that Dinophysis chemical diversity is largely unexplored. Using MN allowed to identify directly known toxins and their relationship between species of Dinophysis, leading to the discovery of five new putative PTX analogues.


Subject(s)
Marine Toxins , Tandem Mass Spectrometry , Chromatography, Liquid , Europe , France , Marine Toxins/analysis
5.
Front Microbiol ; 12: 613199, 2021.
Article in English | MEDLINE | ID: mdl-33717003

ABSTRACT

Paralytic shellfish poisoning (PSP) is a human foodborne syndrome caused by the consumption of shellfish that accumulate paralytic shellfish toxins (PSTs, saxitoxin group). In PST-producing dinoflagellates such as Alexandrium spp., toxin synthesis is encoded in the nuclear genome via a gene cluster (sxt). Toxin production is supposedly associated with the presence of a 4th domain in the sxtA gene (sxtA4), one of the core genes of the PST gene cluster. It is postulated that gene expression in dinoflagellates is partially constitutive, with both transcriptional and post-transcriptional processes potentially co-occurring. Therefore, gene structure and expression mode are two important features to explore in order to fully understand toxin production processes in dinoflagellates. In this study, we determined the intracellular toxin contents of twenty European Alexandrium minutum and Alexandrium pacificum strains that we compared with their genome size and sxtA4 gene copy numbers. We observed a significant correlation between the sxtA4 gene copy number and toxin content, as well as a moderate positive correlation between the sxtA4 gene copy number and genome size. The 18 toxic strains had several sxtA4 gene copies (9-187), whereas only one copy was found in the two observed non-toxin producing strains. Exploration of allelic frequencies and expression of sxtA4 mRNA in 11 A. minutum strains showed both a differential expression and specific allelic forms in the non-toxic strains compared with the toxic ones. Also, the toxic strains exhibited a polymorphic sxtA4 mRNA sequence between strains and between gene copies within strains. Finally, our study supported the hypothesis of a genetic determinism of toxin synthesis (i.e., the existence of several genetic isoforms of the sxtA4 gene and their copy numbers), and was also consistent with the hypothesis that constitutive gene expression and moderation by transcriptional and post-transcriptional regulation mechanisms are the cause of the observed variability in the production of toxins by A. minutum.

6.
Sci Total Environ ; 757: 143782, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33229082

ABSTRACT

The marine dinoflagellate Vulcanodinium rugosum produces powerful paralyzing and cytotoxic compounds named pinnatoxins (PnTX) and portimines. Even though, no related human intoxication episodes following direct exposure in seawater or the ingestion of contaminated seafood have been documented so far. This study aimed at investigating a dinoflagellate bloom linked to acute dermatitis cases in two recreational beaches in Cienfuegos Bay, Cuba. We used epidemiological and clinical data from 60 dermatitis cases consisting of individuals in close contact with the bloom. Seawater physical-chemical properties were described, and the microorganism causing the bloom was identified by means of light and scanning electron microscopy. Morphological identification was confirmed genetically by sequencing the internal transcribed spacers ITS1 and ITS2, and the 5.8S rDNA region. Toxic compounds were identified from a bloom extract using liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS), and their concentrations were estimated based on low-resolution tandem mass spectrometry (LC-MS/MS). Sixty people who had prolonged contact with the dinoflagellate bloom suffered acute dermal irritation. Most patients (79.2%) were children and had to be treated with antibiotics; some required >5-day hospitalization. Combined morphological and genetic characters indicated V. rugosum as the causative agent of the bloom. rDNA sequences of the V. rugosum genotype found in the bloom aligned with others from Asia, including material found in the ballast tank of a ship in Florida. The predominant toxins in the bloom were portimine, PnTX-F and PnTX-E, similar to strains originating from the Pacific Ocean. This bloom was associated with unusual weather conditions such as frequent and prolonged droughts. Our findings indicate a close link between the V. rugosum bloom and a dermatitis outbreak among swimmers in Cienfuegos Bay. Phylogenetic evidence suggests a recent introduction of V. rugosum from the Pacific Ocean into Caribbean waters, possibly via ballast water.


Subject(s)
Dermatitis , Dinoflagellida , Asia , Bays , Caribbean Region , Child , Chromatography, Liquid , Cuba , Florida , Harmful Algal Bloom , Humans , Imines , Pacific Ocean , Phylogeny , Spiro Compounds , Tandem Mass Spectrometry
7.
Harmful Algae ; 100: 101923, 2020 12.
Article in English | MEDLINE | ID: mdl-33298361

ABSTRACT

Centrodinium punctatum is a fusiform dinoflagellate with a global marine distribution. Due to a close phylogenetic relationship of one C. punctatum strain to Alexandrium species, toxin production of this C. punctatum strain was assessed using liquid chromatography coupled to tandem mass spectrometry. The paralytic shellfish toxin (PST) profile of C. punctatum was dominated by six analogs, i.e. STX (30%), GTX-1 (20%) and neoSTX (24%), followed by GTX-2 (9%), GTX-4 (9%) and GTX-3 (8%); deoxy-STX was also putatively identified while no gymnodimines, spirolides or goniodomins were detected. This is the first record of C. punctatum producing saxitoxins. The estimated cellular toxicity was rather elevated, between 91 and 212 pg cell-1 (or 259 and 601 fmol cell-1). When considering the toxicity equivalent factors, results suggest that this species can produce high cellular toxicity compared to other STX-producing dinoflagellates. Morphological details of the sulcal area and the hypotheca of Centrodinium punctatum were re-examined by scanning electron microscopy (SEM); this revealed that in the sulcal area, the left posterior sulcal plate (Ssp) is larger and longer than the left posterior sulcal plate and extended into the hypotheca. Based on the morphological observation, a revised interpretation of the sulcus and hypotheca is proposed.


Subject(s)
Dinoflagellida , Saxitoxin , Chromatography, Liquid , Phylogeny , Tandem Mass Spectrometry
8.
Mar Environ Res ; 160: 105014, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32907732

ABSTRACT

Alexandrium minutum and Alexandrium pacificum are representatives of the dinoflagellate genus that regularly proliferate on the French coasts and other global coastlines. These harmful species may threaten shellfish harvest and human health due to their ability to synthesize neurotoxic alkaloids of the saxitoxin group. However, some dinoflagellates such as A. minutum, and as reported here A. pacificum as well, may also have a beneficial impact on the environment by producing dimethylsulfoniopropionate-DMSP, the precursor of dimethylsulfur-DMS and sulfate aerosols involved in climate balance. However, environmental conditions might influence Alexandrium physiology towards the production of harmful or environmentally friendly compounds. After assessing the influence of two salinity regimes (33 and 38) relative to each species origin (Atlantic French coast and Mediterranean Lagoon respectively), it appears that DMSP and toxin content was variable between the three experimented strains and that higher salinity disadvantages toxin production and tends to favor the production of the osmolytes DMSP and glycine betaine. Hence, this key metabolite production is strain and species-dependent and is influenced by environmental conditions of salinity which in turn, can diversely affect the environment. Widespread coastal blooms of A. minutum and A. pacificum, although being a risk for seafood contamination with toxins, are also a DMSP and DMS source that potentially contribute to the ecosystem structuration and climate. Regarding recent advances in DMSP biosynthesis pathway, 3 dsyB homologs were found in A. minutum but no homolog of the diatom sequence TpMMT.


Subject(s)
Diatoms , Dinoflagellida , Ecosystem , Harmful Algal Bloom , Humans , Population Dynamics , Salinity , Shellfish
SELECTION OF CITATIONS
SEARCH DETAIL
...