Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 43(7): 959-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26239651

ABSTRACT

PEGylation (the covalent binding of one or more polyethylene glycol molecules to another molecule) is a technology frequently used to improve the half-life and other pharmaceutical or pharmacological properties of proteins, peptides, and aptamers. To date, 11 PEGylated biopharmaceuticals have been approved and there is indication that many more are in nonclinical or clinical development. Adverse effects seen with those in toxicology studies are mostly related to the active part of the drug molecule and not to polyethylene glycol (PEG). In 5 of the 11 approved and 10 of the 17 PEGylated biopharmaceuticals in a 2013 industry survey presented here, cellular vacuolation is histologically observed in toxicology studies in certain organs and tissues. No other effects attributed to PEG alone have been reported. Importantly, vacuolation, which occurs mainly in phagocytes, has not been linked with changes in organ function in these toxicology studies. This article was authored through collaborative efforts of industry toxicologists/nonclinical scientists to address the nonclinical safety of large PEG molecules (>10 kilo Dalton) in PEGylated biopharmaceuticals. The impact of the PEG molecule on overall nonclinical safety assessments of PEGylated biopharmaceuticals is discussed, and toxicological information from a 2013 industry survey on PEGylated biopharmaceuticals under development is summarized. Results will contribute to the database of toxicological information publicly available for PEG and PEGylated biopharmaceuticals.


Subject(s)
Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions/etiology , Polyethylene Glycols/toxicity , Animals , Humans , Polyethylene Glycols/chemistry
2.
PLoS One ; 7(5): e38438, 2012.
Article in English | MEDLINE | ID: mdl-22675463

ABSTRACT

Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of ßKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance.


Subject(s)
Fibroblast Growth Factors/pharmacology , Animals , Body Weight/drug effects , Cell Line , Cell Proliferation/drug effects , Eating/drug effects , Fibroblast Growth Factors/administration & dosage , Glucuronidase/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Klotho Proteins , Male , Mice , Mice, Inbred C57BL , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...