Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984053

ABSTRACT

Protection of concrete against aggressive influences from the surrounding environment becomes an important step to increase its durability. Today, alkali silicate solutions are advantageously used as pore-blocking treatments that increase the hardness and impermeability of the concrete's surface layer. Among these chemical substances, known as concrete densifiers, lithium silicate solutions are growing in popularity. In the present study, the chemical composition of the lithium silicate densifiers is put into context with the properties of the newly created insoluble inorganic gel responsible for the micro-filling effect. Fourier-transform infrared spectroscopy was used as a key method to describe the structure of the formed gel. In this context, the gelation process was studied through the evolution of viscoelastic properties over time using oscillatory measurements. It was found that the gelation process is fundamentally controlled by the molar ratio of SiO2 and Li2O in the densifier. The low SiO2 to Li2O ratio promotes the gelling process, resulting in a rapidly formed gel structure that affects macro characteristics, such as water permeability, directly related to the durability of treated concretes.

2.
Materials (Basel) ; 14(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34442875

ABSTRACT

The development of smart materials is a basic prerequisite for the development of new technologies enabling the continuous non-destructive diagnostic analysis of building structures. Within this framework, the piezoresistive behavior of fly ash geopolymer with added carbon black under compression was studied. Prepared cubic specimens were doped with 0.5, 1 and 2% carbon black and embedded with four copper electrodes. In order to obtain a complex characterization during compressive loading, the electrical resistivity, longitudinal strain and acoustic emission were recorded. The samples were tested in two modes: repeated loading under low compressive forces and continuous loading until failure. The results revealed piezoresistivity for all tested mixtures, but the best self-sensing properties were achieved with 0.5% of carbon black admixture. The complex analysis also showed that fly ash geopolymer undergoes permanent deformations and the addition of carbon black changes its character from quasi-brittle to rather ductile. The combination of electrical and acoustic methods enables the monitoring of materials far beyond the working range of a strain gauge.

3.
Materials (Basel) ; 12(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100938

ABSTRACT

The electrical properties of concrete are gaining their importance for the application in building construction. In this study, graphite powder was added to alkali-activated slag mortar as an electrically conductive filler in order to enhance the mortar's conductive properties. The amount of graphite ranged from 1% to 30% of the slag mass. The effect of the graphite powder on the resistivity, capacitance, mechanical properties, and microstructure of the composite was investigated. Selected mixtures were then used for the testing of self-sensing properties under compressive loading. The results show that the addition of an amount of graphite equal to up to 10% of the slag mass improved the electrical properties of the alkali-activated slag. Higher amounts of filler did not provide any further improvement in electrical properties at lower AC frequencies but caused a strong deterioration in mechanical properties. The best self-sensing properties were achieved for the mixture with 10 wt% of graphite, but only at low compressive stresses of up to 6 MPa.

4.
Materials (Basel) ; 9(7)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-28773657

ABSTRACT

Geopolymers are generally appreciated for their good resistance against high temperatures. This paper compares the influence of thermal treatment with temperatures ranging from 200 to 1200 °C on the mechanical properties and microstructure of geopolymers based on two different aluminosilicate precursors, metakaolin and fly ash. Moreover, the paper is also aimed at characterizing the effect of chamotte aggregate on the performance of geopolymers subjected to high temperatures. Thermal treatment leads to a deterioration in the strength of metakaolin geopolymer, whereas fly ash geopolymer gains strength upon heating. The formation of albite above 900 °C is responsible for the fusion of geopolymer matrix during exposure to 1200 °C, which leads to the deformation of the geopolymer samples. Chamotte aggregate improves the performance of geopolymer material by increasing the thermal stability of geopolymers via sintering of the aggregate particles with the geopolymer matrix in the contact zone.

5.
Inorg Chem ; 43(7): 2435-42, 2004 Apr 05.
Article in English | MEDLINE | ID: mdl-15046521

ABSTRACT

The interaction between POCl(3) or POBr(3) and pyridine or DMAP has been reinvestigated to clarify the discrepancies between previously published results concerning the Lewis acidity of phosphoryl halides and their behavior toward pyridine bases. The obtained results show that POCl(3) virtually does not react with pyridine, while it does with 4-(dimethylamino)pyridine (DMAP), even in SO(2) solution, to yield an ionic compound [(DMAP)(2)PO(2)]Cl.3SO(2) (1.3SO(2)). Its recrystallization from acetonitrile gives [(DMAP)(2)PO(2)]Cl.CH(3)CN (1.CH(3)CN). The POBr(3) reacts readily with both DMAP and pyridine forming the analogous tribromides, [(DMAP)(2)PO(2)]Br(3) (2) and [(py)(2)PO(2)]Br(3) (3), respectively. Treatment of 3 with Me(3)SiOSO(2)CF(3) in acetonitrile solution led to [(py)(2)PO(2)][CF(3)SO(3)].CH(3)CN (4), while the reaction between 1.CH(3)CN and Me(3)SiOPOF(2) gave [(DMAP)(2)PO(2)][PO(2)F(2)] (5). The crystal structures of 1.CH(3)CN, 1.3SO(2), 2, and 4 revealed that all four compounds are ionic containing the distorted tetrahedral cations [(DMAP)(2)PO(2)](+) and [(py)(2)PO(2)](+). Both ions represent a donor-stabilized form of the so far unknown cation [PO(2)](+). The geometry of [(DMAP)(2)PO(2)](+), optimized by density functional calculations at the B3LYP/6-31G(d,p) level, is in good agreement with X-ray structural data. The NBO analysis of natural atomic charges shows an extensive delocalization of the [PO(2)](+) intrinsic positive charge and indicates a contribution of the electrostatic attraction to the formation of N-P donor-acceptor bonds. According to a (31)P NMR study, the reactions of both phosphoryl halides with DMAP proceed via successive formation of the intermediates [(DMAP)POX(2)](+) and (DMAP)PO(2)X to give an equimolar mixture of [(DMAP)(2)PO(2)](+) and PX(5) (X = Cl, Br) as the end products. The NMR spectroscopic identification of the cations [(DMAP)POX(2)](+) and [(DMAP)(2)PO(2)](+) was supported by ab initio calculations of their chemical shifts.

SELECTION OF CITATIONS
SEARCH DETAIL
...