Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 488(7412): 490-4, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22914166

ABSTRACT

After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.


Subject(s)
Atmosphere/chemistry , Ethane/analysis , Ethane/chemistry , Methane/analysis , Methane/chemistry , Biofuels/statistics & numerical data , Biomass , Ethane/history , Greenhouse Effect , History, 20th Century , History, 21st Century , Methane/history , Natural Gas/statistics & numerical data , Oil and Gas Fields , Ozone/chemistry , Wetlands
2.
J Diabetes Sci Technol ; 6(1): 86-101, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22401327

ABSTRACT

BACKGROUND: Although altered metabolism has long been known to affect human breath, generating clinically usable metabolic tests from exhaled compounds has proven challenging. If developed, a breath-based lipid test would greatly simplify management of diabetes and serious pathological conditions (e.g., obesity, familial hyperlipidemia, and coronary artery disease), in which systemic lipid levels are a critical risk factor for onset and development of future cardiovascular events. METHODS: We, therefore, induced controlled fluctuations of plasma lipids (insulin-induced lipid suppression or intravenous infusion of Intralipid) during 4-h in vivo experiments on 23 healthy volunteers (12 males/11 females, 28.0 ± 0.3 years) to find correlations between exhaled volatile organic compounds and plasma lipids. In each subject, plasma triglycerides (TG) and free fatty acids (FFA) concentrations were both directly measured and calculated via individualized prediction equations based on the multiple linear regression analysis of a cluster of 4 gases. In the lipid infusion protocol, we also generated common prediction equations using a maximum of 10 gases. RESULTS: This analysis yielded strong correlations between measured and predicted values during both lipid suppression (r = 0.97 for TG; r = 0.90 for FFA) and lipid infusion (r = 0.97 for TG; r = 0.94 for FFA) studies. In our most accurate common prediction model, measured and predicted TG and FFA values also displayed very strong statistical agreement (r = 0.86 and r = 0.81, respectively). CONCLUSIONS: Our results demonstrate the feasibility of measuring plasma lipids through breath analysis. Optimization of this technology may ultimately lead to the development of portable breath analyzers for plasma lipids, replacing blood-based bioassays.


Subject(s)
Exhalation/physiology , Fatty Acids, Nonesterified/analysis , Triglycerides/analysis , Adult , Blood Chemical Analysis/methods , Breath Tests , Chromatography, Gas/methods , Fatty Acids, Nonesterified/blood , Feasibility Studies , Female , Forecasting/methods , Humans , Infusions, Intravenous , Insulin/administration & dosage , Lipids/administration & dosage , Male , Osmolar Concentration , Triglycerides/blood , Weights and Measures
3.
Am J Physiol Endocrinol Metab ; 300(6): E1166-75, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21467303

ABSTRACT

Effective management of diabetes mellitus, affecting tens of millions of patients, requires frequent assessment of plasma glucose. Patient compliance for sufficient testing is often reduced by the unpleasantness of current methodologies, which require blood samples and often cause pain and skin callusing. We propose that the analysis of volatile organic compounds (VOCs) in exhaled breath can be used as a novel, alternative, noninvasive means to monitor glycemia in these patients. Seventeen healthy (9 females and 8 males, 28.0 ± 1.0 yr) and eight type 1 diabetic (T1DM) volunteers (5 females and 3 males, 25.8 ± 1.7 yr) were enrolled in a 240-min triphasic intravenous dextrose infusion protocol (baseline, hyperglycemia, euglycemia-hyperinsulinemia). In T1DM patients, insulin was also administered (using differing protocols on 2 repeated visits to separate the effects of insulinemia on breath composition). Exhaled breath and room air samples were collected at 12 time points, and concentrations of ~100 VOCs were determined by gas chromatography and matched with direct plasma glucose measurements. Standard least squares regression was used on several subsets of exhaled gases to generate multilinear models to predict plasma glucose for each subject. Plasma glucose estimates based on two groups of four gases each (cluster A: acetone, methyl nitrate, ethanol, and ethyl benzene; cluster B: 2-pentyl nitrate, propane, methanol, and acetone) displayed very strong correlations with glucose concentrations (0.883 and 0.869 for clusters A and B, respectively) across nearly 300 measurements. Our study demonstrates the feasibility to accurately predict glycemia through exhaled breath analysis over a broad range of clinically relevant concentrations in both healthy and T1DM subjects.


Subject(s)
Blood Glucose/analysis , Breath Tests/methods , Diabetes Mellitus, Type 1/metabolism , Adult , Chromatography, Gas , Cluster Analysis , Data Interpretation, Statistical , Diabetes Mellitus, Type 1/blood , Feasibility Studies , Female , Gases/analysis , Glucose/administration & dosage , Glucose Clamp Technique , Humans , Infusions, Intravenous , Insulin/blood , Linear Models , Male , Nitrates/analysis , Predictive Value of Tests , Reproducibility of Results , Volatile Organic Compounds/analysis
4.
Biomarkers ; 14(1): 17-25, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19283520

ABSTRACT

The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.


Subject(s)
Biomarkers/analysis , Breath Tests , Ethane/analysis , Pentanes/analysis , Aged , Aged, 80 and over , Female , Humans , Male
5.
Philos Trans R Soc Lond B Biol Sci ; 361(1469): 769-90, 2006 May 29.
Article in English | MEDLINE | ID: mdl-16627294

ABSTRACT

Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.


Subject(s)
Atmosphere/chemistry , Ozone , Air Pollutants , Chlorofluorocarbons , Seasons , Ultraviolet Rays
6.
J Chem Phys ; 122(13): 134312, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15847470

ABSTRACT

Using higher levels of wave-function-based electronic structure theory than previously applied, as well as density functional theory (B-LYP and B3-LYP functionals), all theoretical models conclude that three ONOOH conformers are stationary point minima, in disagreement with some of the previous studies that we survey. In order of increasing energy, these are the cis-cis, cis-perp, and trans-perp conformers. Basis sets including diffuse functions seem to be needed to obtain a qualitatively correct representation of the internal rotation potential energy surface at higher levels of theory. Internal rotation about the peroxide bond involving the cis-cis, cis-gauche transition structure (TS), cis-perp, and cis-trans TS conformers is studied in detail. To help ascertain the relative stability of the cis-perp conformer, multireference configuration interaction energy calculations are carried out, and rule of thumb estimates of multireference character in the ground-state wave functions of the ONOOH conformers are considered. CCSD(T)/aug-cc-pVTZ physical properties (geometries, rotational constants, electric dipole moments, harmonic vibrational frequencies, and infrared intensities) are compared with the analogous experimental data wherever possible, and also with density functional theory. Where such experimental data are nonexistent, the CCSD(T) and B3-LYP results are useful representations. For example, the electric dipole moment |mu(e)| of the cis-cis conformer is predicted to be 0.97+/-0.03 D. CCSD(T) energies, extrapolated to the aug-cc-pVNZ limit, are employed in isodesmic reaction schemes to derive zero Kelvin heats of formation and bond dissociation energies of the ONOOH stationary point minima. In agreement with recent gas-phase experiments, the peroxide bond dissociation energies of the cis-cis and trans-perp conformers are calculated as 19.3+/-0.4 and 16.0+/-0.4 kcalmol, respectively. The lowest energy cis-cis conformer is less stable than nitric acid by 28.1+/-0.4 kcalmol at 0 K.

7.
Proc Natl Acad Sci U S A ; 101(23): 8537-41, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15173582

ABSTRACT

Oceanic iron (Fe) fertilization experiments have advanced the understanding of how Fe regulates biological productivity and air-sea carbon dioxide (CO(2)) exchange. However, little is known about the production and consumption of halocarbons and other gases as a result of Fe addition. Besides metabolizing inorganic carbon, marine microorganisms produce and consume many other trace gases. Several of these gases, which individually impact global climate, stratospheric ozone concentration, or local photochemistry, have not been previously quantified during an Fe-enrichment experiment. We describe results for selected dissolved trace gases including methane (CH(4)), isoprene (C(5)H(8)), methyl bromide (CH(3)Br), dimethyl sulfide, and oxygen (O(2)), which increased subsequent to Fe fertilization, and the associated decreases in concentrations of carbon monoxide (CO), methyl iodide (CH(3)I), and CO(2) observed during the Southern Ocean Iron Enrichment Experiments.

8.
Proc Natl Acad Sci U S A ; 100(21): 11975-9, 2003 Oct 14.
Article in English | MEDLINE | ID: mdl-14530403

ABSTRACT

Light alkane hydrocarbons are present in major quantities in the near-surface atmosphere of Texas, Oklahoma, and Kansas during both autumn and spring seasons. In spring 2002, maximum mixing ratios of ethane [34 parts per 109 by volume (ppbv)], propane (20 ppbv), and n-butane (13 ppbv) were observed in north-central Texas. The elevated alkane mixing ratios are attributed to emissions from the oil and natural gas industry. Measured alkyl nitrate mixing ratios were comparable to urban smog values, indicating active photochemistry in the presence of nitrogen oxides, and therefore with abundant formation of tropospheric ozone. We estimate that 4-6 teragrams of methane are released annually within the region and represents a significant fraction of the estimated total U.S. emissions. This result suggests that total U.S. natural gas emissions may have been underestimated. Annual ethane emissions from the study region are estimated to be 0.3-0.5 teragrams.

SELECTION OF CITATIONS
SEARCH DETAIL
...