Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(9): 1584-1594, 2023 09.
Article in English | MEDLINE | ID: mdl-37640911

ABSTRACT

Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.


Subject(s)
Brain , Neurons , Animals , Mice , Parietal Lobe , Photons , Perception
2.
Elife ; 112022 01 19.
Article in English | MEDLINE | ID: mdl-35043782

ABSTRACT

Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour and brain activity become more sophisticated, the ability to specify and run richly structured tasks becomes more important. An increasing focus on reproducibility also necessitates accurate communication of task logic to other researchers. To these ends, we developed pyControl, a system of open-source hardware and software for controlling behavioural experiments comprising a simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware modules for building behavioural setups, and a graphical user interface designed for efficiently running high-throughput experiments on many setups in parallel, all with extensive online documentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates communication and reproducibility of behavioural experiments through a highly readable task definition syntax and self-documenting features. Here, we outline the system's design and rationale, present validation experiments characterising system performance, and demonstrate example applications in freely moving and head-fixed mouse behaviour.


Subject(s)
Behavioral Sciences/methods , Animals , Computers , Mice , Reproducibility of Results , Software
3.
Sci Adv ; 6(17): eaay5333, 2020 04.
Article in English | MEDLINE | ID: mdl-32426459

ABSTRACT

Synchronization of precise spike times across multiple neurons carries information about sensory stimuli. Inhibitory interneurons are suggested to promote this synchronization, but it is unclear whether distinct interneuron subtypes provide different contributions. To test this, we examined single-unit recordings from barrel cortex in vivo and used optogenetics to determine the contribution of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to the synchronization of spike times across cortical layers. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contributions to feedforward and feedback inhibition, respectively. Our findings demonstrate that distinct subtypes of inhibitory interneurons have frequency-selective roles in the spatiotemporal synchronization of precise spike times.

SELECTION OF CITATIONS
SEARCH DETAIL
...