Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 195(1): 617-639, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38285060

ABSTRACT

Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.


Subject(s)
Phylogeny , Water , Zygophyllum , Water/metabolism , Zygophyllum/genetics , Zygophyllum/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Genomics/methods
2.
Ann Bot ; 131(4): 723-736, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36848247

ABSTRACT

BACKGROUND AND AIMS: Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS: We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS: The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION: Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.


Subject(s)
Zanthoxylum , Zygophyllum , Zygophyllum/metabolism , Zanthoxylum/metabolism , Alkanes , Plant Leaves/metabolism , Sodium Chloride , Chlorophyll , Stress, Physiological , Water/metabolism , Waxes , Gene Expression Regulation, Plant
3.
BMC Plant Biol ; 23(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36588156

ABSTRACT

BACKGROUND: ACYL-LIPID THIOESTERASES (ALTs) are a subclass of plastid-localized, fatty acyl-acyl carrier protein (ACP) thioesterase enzymes from plants. They belong to the single hot dog-fold protein family. ALT enzymes generate medium-chain (C6-C14) and C16 fatty acids, methylketone precursors (ß-keto fatty acids), and 3-hydroxy fatty acids when expressed heterologously in E. coli. The diverse substrate chain-length and oxidation state preferences of ALTs set them apart from other plant acyl-ACP thioesterases, and ALTs show promise as metabolic engineering tools to produce high-value medium-chain fatty acids and methylketones in bacterial or plant systems. Here, we used a targeted motif-swapping approach to explore connections between ALT protein sequence and substrate specificity. Guided by comparative motif searches and computational modelling, we exchanged regions of amino acid sequence between ALT-type thioesterases from Arabidopsis thaliana, Medicago truncatula, and Zea mays to create chimeric ALT proteins. RESULTS: Comparing the activity profiles of chimeric ALTs in E. coli to their wild-type counterparts led to the identification of interacting regions within the thioesterase domain that shape substrate specificity and enzyme activity. Notably, the presence of a 31-CQH[G/C]RH-36 motif on the central α-helix was shown to shift chain-length specificity towards 12-14 carbon chains, and to be a core determinant of substrate specificity in ALT-type thioesterases with preference for 12-14 carbon 3-hydroxyacyl- and ß-ketoacyl-ACP substrates. For an ALT containing this motif to be functional, an additional 108-KXXA-111 motif and compatible sequence spanning aa77-93 of the surrounding ß-sheet must also be present, demonstrating that interactions between residues in these regions of the catalytic domain are critical to thioesterase activity. The behaviour of chimeric enzymes in E. coli also indicated that aa77-93 play a significant role in dictating whether an ALT will prefer ≤10-carbon or ≥ 12-carbon acyl chain-lengths, and aa91-96 influence selectivity for substrates of fully or partially reduced oxidation states. Additionally, aa64-67 on the hot dog-fold ß-sheet were shown to be important for enabling an ALT to act on 3-hydroxy fatty acyl-ACP substrates. CONCLUSIONS: By revealing connections between thioesterase sequence and substrate specificity, this study is an advancement towards engineering recombinant ALTs with product profiles suited for specific applications.


Subject(s)
Arabidopsis , Escherichia coli , Substrate Specificity , Escherichia coli/genetics , Escherichia coli/metabolism , Plants/metabolism , Thiolester Hydrolases/metabolism , Fatty Acids/metabolism , Arabidopsis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Metabolites ; 11(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34822393

ABSTRACT

Suberin is a cell-wall-associated hetero-polymer deposited in specific plant tissues. The precise role of its composition and lamellae structure in protecting plants against abiotic stresses is unclear. In Arabidopsis thaliana, we tested the biochemical and physiological responses to water deficiency and NaCl treatment in mutants that are differentially affected in suberin composition and lamellae structure. Chronic drought stress increased suberin and suberin-associated waxes in wild-type plants. Suberin-deficient mutants were not more susceptible than the wild-type to the chronic drought stress imposed in this study. Nonetheless, the cyp86a1-1 cyp86b1-1 mutant, which had a severely altered suberin composition and lamellae structure, exhibited increased water loss through the root periderm. Cyp86a1-1 cyp86b1-1 also recorded lower relative water content in leaves. The abcg2-1 abcg6-1 abcg20-1 mutant, which has altered suberin composition and lamellae, was very sensitive to NaCl treatment. Furthermore, cyp86a1-1 cyp86b1-1 recorded a significant drop in the leaf K/Na ratio, indicating salt sensitivity. The far1-2 far4-1 far5-1 mutant, which did not show structural defects in the suberin lamellae, had similar responses to drought and NaCl treatments as the wild-type. Our results provide evidence that the suberin amount and lamellae structure are key features in the barrier function of suberin in reducing water loss and reducing sodium uptake through roots for better performance under drought and salt stresses.

5.
Phytochemistry ; 184: 112665, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33524853

ABSTRACT

Camelina sativa is relatively drought tolerant and requires less fertilizer than other oilseed crops. Various lipid- and phenolic-based extracellular barriers of plants help to protect them against biotic and abiotic stresses. These barriers, which consist of solvent-insoluble polymeric frameworks and solvent-extractable waxes, include the cuticle of aerial plant surfaces and suberized cell walls found, for example, in periderms and seed coats. Cutin, the polymeric matrix of the cuticle, and the aliphatic domain of suberin are fatty acid- and glycerol-based polyesters. These polyesters were investigated by base-catalyzed transesterification of C. sativa aerial and underground delipidated tissues followed by gas chromatographic analysis of the released monomer mixtures. Seed coat and root suberin had similar compositions, with 18-hydroxyoctadecenoic and 1,18-octadecenedioic fatty acids being the dominant species. Root suberin presented a typical lamellar ultrastructure, but seed coats showed almost imperceptible, faint dark bands. Leaf and stem lipid polyesters were composed of fatty acids (FA), 1,ω-dicarboxylic fatty acids (DCA), ω-hydroxy fatty acids (HFA) and hydroxycinnamic acids (HCA). Dihydroxypalmitic acid (DHP) and caffeic acid were the major constituents of leaf cutin, whereas stem cutin presented similar molar proportions in several monomers across the four classes. Unlike the leaf cuticle, the C. sativa stem cuticle presented lamellar structure by transmission electron microscopy. Flower cutin was dominated by DHP, did not contain aromatics, and presented substantial amounts (>30%) of hydroxylated 1,ω-dicarboxylic acids. We found striking differences between the lipid polyester monomer compositions of aerial tissues of C. sativa and that of its close relatives Arabidopsis thaliana and Brassica napus.


Subject(s)
Dicarboxylic Acids , Fatty Acids , Lipids , Membrane Lipids , Polyesters
6.
Lipids ; 56(3): 327-344, 2021 05.
Article in English | MEDLINE | ID: mdl-33547664

ABSTRACT

ACYL-LIPID THIOESTERASES (ALT) are a type of plant acyl-acyl carrier protein thioesterase that generate a wide range of medium-chain fatty acids and methylketone (MK) precursors when expressed heterologously in Escherichia coli. While this makes ALT-type thioesterases attractive as metabolic engineering targets to increase production of high-value medium-chain fatty acids and MKs in plant systems, the behavior of ALT enzymes in planta was not well understood before this study. To profile the substrate specificities of ALT-type thioesterases in different plant tissue types, AtALT1-4 from Arabidopsis thaliana, which have widely varied chain length and oxidation state preferences in E. coli, were overexpressed in Arabidopsis seeds, Camelina sativa seeds, and Nicotiana benthamiana leaves. Seed-specific overexpression of ALT enzymes led to medium-chain fatty acid accumulation in Arabidopsis and Camelina seed triacylglycerols, and transient overexpression in N. benthamiana demonstrated that the substrate preferences of ALT-type thioesterases in planta generally agree with those previously determined in E. coli. AtALT1 and AtALT4 overexpression in leaves and seeds resulted in the accumulation of 12-14 carbon-length fatty acids and 6-8 carbon-length fatty acids, respectively. While it was difficult to completely profile the products of ALT-type thioesterases that generate MK precursors (i.e. ß-keto fatty acids), our results nonetheless demonstrate that ALT enzymes are catalytically diverse in planta. The knowledge gained from this study is a significant step towards being able to use ALT-type thioesterases as metabolic engineering tools to modify the fatty acid profiles of oilseed crops, other plants, and microorganisms.


Subject(s)
Metabolic Engineering/methods , Plants, Genetically Modified/growth & development , Thiolester Hydrolases/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Brassicaceae/genetics , Brassicaceae/growth & development , Brassicaceae/metabolism , Fatty Acids/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Substrate Specificity , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Triglycerides/metabolism
7.
Lipids ; 55(5): 435-455, 2020 09.
Article in English | MEDLINE | ID: mdl-32074392

ABSTRACT

Plants use fatty acids to synthesize acyl lipids for many different cellular, physiological, and defensive roles. These roles include the synthesis of essential membrane, storage, or surface lipids, as well as the production of various fatty acid-derived metabolites used for signaling or defense. Fatty acids are activated for metabolic processing via a thioester linkage to either coenzyme A or acyl carrier protein. Acyl synthetases metabolically activate fatty acids to their thioester forms, and acyl thioesterases deactivate fatty acyl thioesters to free fatty acids by hydrolysis. These two enzyme classes therefore play critical roles in lipid metabolism. This review highlights the surprisingly complex and varying roles of fatty acyl synthetases in plant lipid metabolism, including roles in the intracellular trafficking of fatty acids. This review also surveys the many specialized fatty acyl thioesterases characterized to date in plants, which produce a great diversity of fatty acid products in a tissue-specific manner. While some acyl thioesterases produce fatty acids that clearly play roles in plant-insect or plant-microbial interactions, most plant acyl thioesterases have yet to be fully characterized both in terms of their substrate specificities and their functions. The biotechnological applications of plant acyl thioesterases and synthetases are also discussed, as there is significant interest in these enzymes as catalysts for the sustainable production of fatty acids and their derivatives for industrial uses.


Subject(s)
Ligases/genetics , Lipid Metabolism/genetics , Palmitoyl-CoA Hydrolase/genetics , Plants/genetics , Amino Acid Sequence/genetics , Biotechnology/trends , Fatty Acids/genetics , Fatty Acids/metabolism , Ligases/chemistry , Ligases/metabolism , Palmitoyl-CoA Hydrolase/chemistry , Palmitoyl-CoA Hydrolase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism , Substrate Specificity
8.
Front Fungal Biol ; 1: 614633, 2020.
Article in English | MEDLINE | ID: mdl-37743878

ABSTRACT

Histone modifications play a significant role in the regulation of biosynthetic gene clusters (BGCs) in the phytopathogen Fusarium graminearum, by contrast, epigenetic regulation by DNA methyltransferases (DNMTs) is less documented. In this study, we characterized two DNMTs (FgDIM-2 and FgRID) in F. graminearum, with homologies to "Deficient in methylation" (DIM-2) and "Repeat-induced point (RIP) deficient" (RID) from Neurospora. The loss of DNMTs resulted in not only a decrease in average methylation density in the nutrient-poor, compared to nutrient-rich conditions, but also differences in the genes expressed between the WT and the DNMT mutant strains, implicating the external environment as an important trigger in altering DNA methylation patterns. Consequently, we observed significant changes in the regulation of multiple BGCs and alterations in the pathogenicity of the fungus.

9.
Mol Plant Pathol ; 20(1): 92-106, 2019 01.
Article in English | MEDLINE | ID: mdl-30113774

ABSTRACT

NADPH oxidase (NOX) is one of the sources of reactive oxygen species (ROS) that modulates the activity of proteins through modifications of their cysteine residues. In a previous study, we demonstrated the importance of NOX in both the development and pathogenicity of the phytopathogen Fusarium graminearum. In this article, comparative proteomics between the wild-type and a Nox mutant of F. graminearum was used to identify active cysteine residues on candidate redox-sensing proteins. A two-dimensional gel approach based on labelling with monobromobimane (mBBR) identified 19 candidate proteins, and was complemented with a gel-free shotgun approach based on a biotin switch method, which yielded 99 candidates. The results indicated that, in addition to temporal regulation, a large number of primary metabolic enzymes are potentially targeted by NoxAB-generated ROS. Targeted disruption of these metabolic genes showed that, although some are dispensable, others are essential. In addition to metabolic enzymes, developmental proteins, such as the Woronin body major protein (FGSG_08737) and a glycosylphosphatidylinositol (GPI)-anchored protein (FGSG_10089), were also identified. Deletion of either of these genes reduced the virulence of F. graminearum. Furthermore, changing the redox-modified cysteine (Cys325 ) residue in FGSG_10089 to either serine or phenylalanine resulted in a similar phenotype to the FGSG_10089 knockout strain, which displayed reduced virulence and altered cell wall morphology; this underscores the importance of Cys325 to the function of the protein. Our results indicate that NOX-generated ROS act as intracellular signals in F. graminearum and modulate the activity of proteins affecting development and virulence in planta.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , NADPH Oxidases/metabolism , Signal Transduction , Cell Wall/metabolism , Cysteine/metabolism , Electrophoresis, Gel, Two-Dimensional , Fusarium/pathogenicity , Glycosylphosphatidylinositols/metabolism , Oxidation-Reduction , Phenotype , Virulence
10.
Plant Physiol ; 179(2): 415-432, 2019 02.
Article in English | MEDLINE | ID: mdl-30514726

ABSTRACT

Plant aerial organs are coated with cuticular waxes, a hydrophobic layer that primarily serves as a waterproofing barrier. Cuticular wax is a mixture of aliphatic very-long-chain molecules, ranging from 22 to 48 carbons, produced in the endoplasmic reticulum of epidermal cells. Among all wax components, alkanes represent up to 80% of total wax in Arabidopsis (Arabidopsis thaliana) leaves. Odd-numbered alkanes and their derivatives are produced through the alkane-forming pathway. Although the chemical reactions of this pathway have been well described, the enzymatic mechanisms catalyzing these reactions remain unclear. We previously showed that a complex made of Arabidopsis ECERIFERUM1 (CER1) and CER3 catalyzes the conversion of acyl-Coenzyme A's to alkanes with strict substrate specificity for compounds containing more than 29 carbons. To learn more about alkane biosynthesis in Arabidopsis, we characterized the biochemical specificity and physiological functions of a CER1 homolog, CER1-LIKE1. In a yeast strain engineered to produce very-long-chain fatty acids, CER1-LIKE1 interacted with CER3 and cytochrome B5 to form a functional complex leading to the production of alkanes that are of different chain lengths compared to that produced by CER1-containing complexes. Gene expression analysis showed that both CER1 and CER1-LIKE1 are differentially expressed in an organ- and tissue-specific manner. Moreover, the inactivation or overexpression of CER1-LIKE1 in Arabidopsis transgenic lines specifically impacted alkane biosynthesis and wax crystallization. Collectively, our study reports on the identification of a further plant alkane synthesis enzymatic component and supports a model in which several alkane-forming complexes with distinct chain-length specificities coexist in plants.


Subject(s)
Alkanes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbon-Carbon Lyases , Gene Expression Regulation, Plant , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Saccharomyces cerevisiae/genetics , Nicotiana/genetics , Waxes/chemistry , Waxes/metabolism
11.
Plant Physiol Biochem ; 127: 104-118, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29571003

ABSTRACT

Acyl-ACP thioesterase enzymes, which cleave fatty acyl thioester bonds to release free fatty acids, contribute to much of the fatty acid diversity in plants. In Arabidopsis thaliana, a family of four single hot-dog fold domain, plastid-localized acyl-lipid thioesterases (AtALT1-4) generate medium-chain (C6-C14) fatty and ß-keto fatty acids as secondary metabolites. These volatile products may serve to attract insect pollinators or deter predatory insects. Homologs of AtALT1-4 are present in all plant taxa, but are nearly all uncharacterized. Despite high sequence identity, AtALT1-4 generate different lipid products, suggesting that ALT homologs in other plants also have highly varied activities. We investigated the catalytic diversity of ALT-like thioesterases by screening the substrate specificities of 15 ALT homologs from monocots, eudicots, a lycophyte, a green microalga, and the ancient gymnosperm Gingko biloba, via expression in Escherichia coli. Overall, these enzymes had highly varied substrate preferences compared to one another and to AtALT1-4, and could be classified into four catalytic groups comprising members from diverse taxa. Group 1 ALTs primarily generated 14:1 ß-keto fatty acids, Group 2 ALTs produced 6-10 carbon fatty/ß-keto fatty acids, Group 3 ALTs predominantly produced 12-14 carbon fatty acids, and Group 4 ALTs mainly generated 16 carbon fatty acids. Enzymes in each group differed significantly in the quantities of lipids and types of minor products they generated in E. coli. Medium-chain fatty acids are used to manufacture insecticides, pharmaceuticals, and biofuels, and ALT-like proteins are ideal candidates for metabolic engineering to produce specific fatty acids in significant quantities.


Subject(s)
Arabidopsis/enzymology , Chlorophyta/enzymology , Ginkgo biloba/enzymology , Palmitoyl-CoA Hydrolase/chemistry , Plant Proteins/chemistry , Arabidopsis/genetics , Chlorophyta/genetics , Ginkgo biloba/genetics , Palmitoyl-CoA Hydrolase/genetics , Plant Proteins/genetics , Species Specificity , Substrate Specificity/physiology
12.
Bio Protoc ; 7(12): e2331, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-34541091

ABSTRACT

Here we describe both non-extraction and solvent-extraction methods for root aliphatic suberin analysis. The non-extraction method is fast as roots are directly depolymerized using acidic transmethylation. However, suberin aliphatic components are isolated together with all the other acyl chains making up the lipids (e.g., membranes) present in roots. For the solvent-extraction method, roots are first delipidated before transmethylation. This method is longer but allows separation of soluble and polymerized root lipids. This protocol is optimized for tissue culture- or soil-grown Arabidopsis thaliana plants, but can be used with roots of other plants.

13.
BMC Genomics ; 17(1): 1014, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27938326

ABSTRACT

BACKGROUND: The Fusarium graminearum species complex is composed of many distinct fungal species that cause several diseases in economically important crops, including Fusarium Head Blight of wheat. Despite being closely related, these species and individuals within species have distinct phenotypic differences in toxin production and pathogenicity, with some isolates reported as non-pathogenic on certain hosts. In this report, we compare genomes and gene content of six new isolates from the species complex, including the first available genomes of F. asiaticum and F. meridionale, with four other genomes reported in previous studies. RESULTS: A comparison of genome structure and gene content revealed a 93-99% overlap across all ten genomes. We identified more than 700 k base pairs (kb) of single nucleotide polymorphisms (SNPs), insertions, and deletions (indels) within common regions of the genome, which validated the species and genetic populations reported within species. We constructed a non-redundant pan gene list containing 15,297 genes from the ten genomes and among them 1827 genes or 12% were absent in at least one genome. These genes were co-localized in telomeric regions and select regions within chromosomes with a corresponding increase in SNPs and indels. Many are also predicted to encode for proteins involved in secondary metabolism and other functions associated with disease. Genes that were common between isolates contained high levels of nucleotide variation and may be pseudogenes, allelic, or under diversifying selection. CONCLUSIONS: The genomic resources we have contributed will be useful for the identification of genes that contribute to the phenotypic variation and niche specialization that have been reported among members of the F. graminearum species complex.


Subject(s)
Fusarium/classification , Fusarium/genetics , Genome, Fungal , Genomics , High-Throughput Nucleotide Sequencing , Alleles , Computational Biology/methods , Fusarium/metabolism , Genes, Fungal , Genetic Variation , Genomics/methods , INDEL Mutation , Polymorphism, Single Nucleotide , Pseudogenes , Secondary Metabolism , Selection, Genetic
14.
New Phytol ; 212(4): 977-991, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27716944

ABSTRACT

A comparison of the transcriptomes of russeted vs nonrusseted apple skins previously highlighted a tight relationship between a gene encoding an MYB-type transcription factor, MdMYB93, and some key suberin biosynthetic genes. The present work assesses the role of this transcription factor in the suberization process. A phylogenetic analysis of MdMYB93 and Arabidopsis thaliana MYBs was performed and the function of MdMYB93 was further investigated using Agrobacterium-mediated transient overexpression in Nicotiana benthamiana leaves. An RNA-Seq analysis was performed to highlight the MdMYB93-regulated genes. Ultraperformance liquid chromatography-triple time-of-flight (UPLC-TripleTOF) and GC-MS were used to investigate alterations in phenylpropanoid, soluble-free lipid and lipid polyester contents. A massive accumulation of suberin and its biosynthetic precursors in MdMYB93 agroinfiltrated leaves was accompanied by a remobilization of phenylpropanoids and an increased amount of lignin precursors. Gene expression profiling displayed a concomitant alteration of lipid and phenylpropanoid metabolism, cell wall development, and extracellular transport, with a large number of induced transcripts predicted to be involved in suberin deposition. The present work supports a major role of MdMYB93 in the regulation of suberin deposition in russeted apple skins, from the synthesis of monomeric precursors, their transport, polymerization, and final deposition as suberin in primary cell wall.


Subject(s)
Fruit/metabolism , Lipids/chemistry , Malus/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , Lignin/metabolism , Phylogeny , Plant Leaves/metabolism , Propanols/metabolism , Nicotiana/genetics , Transcription Factors/metabolism
15.
J Exp Bot ; 67(9): 2538-40, 2016 04.
Article in English | MEDLINE | ID: mdl-27162275

Subject(s)
Hordeum , Waxes
16.
Plant Physiol ; 171(3): 1934-50, 2016 07.
Article in English | MEDLINE | ID: mdl-27231100

ABSTRACT

Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots.


Subject(s)
Arabidopsis/metabolism , Coumaric Acids/metabolism , Fatty Alcohols/metabolism , Plant Roots/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Coumaric Acids/chemistry , Fatty Alcohols/chemistry , Gas Chromatography-Mass Spectrometry , Lipids/chemistry , Lipids/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Roots/chemistry , Plants, Genetically Modified , Waxes/metabolism
17.
J Environ Sci Health B ; 51(5): 326-39, 2016.
Article in English | MEDLINE | ID: mdl-26852878

ABSTRACT

Little is known about the mixed fungal synthesis of high-value aliphatics derived from the metabolism of simple and complex carbon substrates. Trichoderma koningii and Penicillium janthinellum were fed with undecanoic acid (UDA), potatoe dextrose broth (PDB), and their mixture. Pyrolysis Field Ionization Mass Spectrometry (Py-FIMS) together with (1)H and (13)C Nuclear Magnetic Resonance (NMR) characterized CHCl3 soluble aliphatics in the fungal cell culture. Data from NMR and Py-FIMS analysis were complementary to each other. On average, the mixed fungal species produced mostly fatty acids (28% of total ion intensity, TII) > alkanes (2% of TII) > n-diols (2% of TII) > and alkyl esters (0.8% of TII) when fed with UDA, PDB or UDA+PDB. The cell culture accumulated aliphatics extracellularly, although most of the identified compounds accumulated intracellularly. The mixed fungal culture produced high-value chemicals from the metabolic conversion of simple and complex carbon substrates.


Subject(s)
Agar/chemistry , Alkanes/metabolism , Culture Media/chemistry , Esters/metabolism , Fatty Acids/metabolism , Penicillium/metabolism , Trichoderma/metabolism , Aerobiosis , Solanum tuberosum
18.
Mol Plant Microbe Interact ; 28(11): 1256-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26125491

ABSTRACT

Fusarium graminearum is a pathogenic fungus that causes Fusarium head blight in wheat and lowers the yield and quality of grains by contamination with the trichothecene mycotoxin deoxynivalenol. The fungi coexist and interact with several different fusaria as well as other plant pathogenic fungi and bacteria in the field. In Canada, F. graminearum exists as two main trichothecene chemotypes: 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol. To understand the potential interactions between two isolates of these chemotypes, we conducted coinoculation studies both in culture and in planta. The studies showed that intraspecies interaction reduces trichothecene yield in culture and disease symptoms in wheat. To elucidate the genes involved in the intraspecies interaction, expression profiling was performed on RNA samples isolated from coinoculated cultures, and potential genes were identified by using the genome sequences of the respective isolates.


Subject(s)
Fusarium/genetics , Gene Expression Profiling , Microbial Interactions/genetics , Trichothecenes/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/metabolism , Fusarium/pathogenicity , Gene Expression Regulation, Fungal , Genome, Fungal/genetics , Host-Pathogen Interactions , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Species Specificity , Transcriptome , Triticum/microbiology , Virulence/genetics
19.
Plant Cell Rep ; 34(4): 573-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25504271

ABSTRACT

Suberin is a lipid-phenolic biopolyester deposited in the cell walls of certain boundary tissue layers of plants, such as root endodermis, root and tuber peridermis, and seed coats. Suberin serves as a protective barrier in these tissue layers, controlling, for example, water and ion transport. It is also a stress-induced anti-microbial barrier. The suberin polymer contains a variety of C16-C24 chain-length aliphatics, such as ω-hydroxy fatty acids, α,ω-dicarboxylic fatty acids, and primary fatty alcohols. Suberin also contains high amounts of glycerol and phenolics, especially ferulic acid. In addition, non-covalently linked waxes are likely associated with the suberin polymer. This review focusses on the suberin biosynthetic enzymes identified to date, which include ß-ketoacyl-CoA synthases, fatty acyl reductases, long-chain acyl-CoA synthetases, cytochrome P450 monooxygenases, glycerol 3-phosphate acyltransferases, and phenolic acyltransferases. We also discuss recent advances in our understanding of the transport of suberin components intracellularly and to the cell wall, polymer assembly, and the regulation of suberin deposition.


Subject(s)
Biopolymers/metabolism , Extracellular Space/metabolism , Lipids/biosynthesis , Biological Transport , Lipids/chemistry , Plant Roots/metabolism , Waxes/metabolism
20.
J Environ Sci Health B ; 49(12): 945-54, 2014.
Article in English | MEDLINE | ID: mdl-25310810

ABSTRACT

The capacity of two soil fungi, Trichoderma koningii and Penicillium janthinellum, to oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and store intracellular lipids during growth is unknown. This article reports for the first time the metabolism of decanoic acid (DA, C10:0), undecanoic acid (UDA, n-C11:0), a mixture of the acids (UDA+DA) and a mixture of UDA+ potato dextrose broth (PDB) by T. koningii and P. janthinellum and their mixed culture. A control PDB complex substrate was used as a substrate control treatment. The fungal cultures were assayed for their capacity to: (1) oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and (2) store lipids intracellularly during growth. On all four fatty acid substrates, the mixed T. koningii and P. janthinellum culture produced more biomass and CO2 than the individual fungal cultures. Per 150 mL culture, the mixed species culture grown on UDA+PDB and on PDB alone produced the most biomass (7,567 mg and 11,425 mg, respectively). When grown in DA, the mixed species culture produced the least amount of biomass (6,400 mg), a quantity that was lower than those obtained in UDA (7,550 mg) or UDA+DA (7,270 mg). Amounts of CO2 produced ranged from 210 mg under DA to 618 mg under PDB, and these amounts were highly correlated with biomass (r(2) = 0.99). Fluorescence microscopy of stained lipids in the mixed fungal cell cultures growing during the exponential phase demonstrated larger fungal cells and higher accumulation of lipids in membranes and storage bodies than those observed during the lag and stationary phases. T. koningii and P. janthinellum grown on n-C10:0 and n-C11:0 fatty acids produced lower amounts of biomass and CO2, but stored higher amounts of intracellular lipids, than when grown on PDB alone.


Subject(s)
Carbon Dioxide/metabolism , Decanoic Acids/metabolism , Fatty Acids/metabolism , Penicillium/metabolism , Trichoderma/metabolism , Batch Cell Culture Techniques , Biomass , Carbon/metabolism , Glucose/metabolism , Lipid Metabolism , Microscopy, Fluorescence , Oxidation-Reduction , Penicillium/growth & development , Soil Microbiology , Trichoderma/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...