Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(D1): D986-D993, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350644

ABSTRACT

The GWAS Central resource gathers and curates extensive summary-level genome-wide association study (GWAS) data and puts a range of user-friendly but powerful website tools for the comparison and visualisation of GWAS data at the fingertips of researchers. Through our continued efforts to harmonise and import data received from GWAS authors and consortia, and data sets actively collected from public sources, the database now contains over 72.5 million P-values for over 5000 studies testing over 7.4 million unique genetic markers investigating over 1700 unique phenotypes. Here, we describe an update to integrate this extensive data collection with mouse disease model data to support insights into the functional impact of human genetic variation. GWAS Central has expanded to include mouse gene-phenotype associations observed during mouse gene knockout screens. To allow similar cross-species phenotypes to be compared, terms from mammalian and human phenotype ontologies have been mapped. New interactive interfaces to find, correlate and view human and mouse genotype-phenotype associations are included in the website toolkit. Additionally, the integrated browser for interrogating multiple association data sets has been updated and a GA4GH Beacon API endpoint has been added for discovering variants tested in GWAS. The GWAS Central resource is accessible at https://www.gwascentral.org/.


Subject(s)
Databases, Genetic , Genome-Wide Association Study , Humans , Animals , Mice , Genotype , Phenotype , Data Collection , Polymorphism, Single Nucleotide , Mammals
2.
Front Digit Health ; 4: 788124, 2022.
Article in English | MEDLINE | ID: mdl-35243479

ABSTRACT

To analyse large corpora using machine learning and other Natural Language Processing (NLP) algorithms, the corpora need to be standardized. The BioC format is a community-driven simple data structure for sharing text and annotations, however there is limited access to biomedical literature in BioC format and a lack of bioinformatics tools to convert online publication HTML formats to BioC. We present Auto-CORPus (Automated pipeline for Consistent Outputs from Research Publications), a novel NLP tool for the standardization and conversion of publication HTML and table image files to three convenient machine-interpretable outputs to support biomedical text analytics. Firstly, Auto-CORPus can be configured to convert HTML from various publication sources to BioC. To standardize the description of heterogenous publication sections, the Information Artifact Ontology is used to annotate each section within the BioC output. Secondly, Auto-CORPus transforms publication tables to a JSON format to store, exchange and annotate table data between text analytics systems. The BioC specification does not include a data structure for representing publication table data, so we present a JSON format for sharing table content and metadata. Inline tables within full-text HTML files and linked tables within separate HTML files are processed and converted to machine-interpretable table JSON format. Finally, Auto-CORPus extracts abbreviations declared within publication text and provides an abbreviations JSON output that relates an abbreviation with the full definition. This abbreviation collection supports text mining tasks such as named entity recognition by including abbreviations unique to individual publications that are not contained within standard bio-ontologies and dictionaries. The Auto-CORPus package is freely available with detailed instructions from GitHub at: https://github.com/omicsNLP/Auto-CORPus.

SELECTION OF CITATIONS
SEARCH DETAIL
...