Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Med ; 24(4): 811-820, 2022 04.
Article in English | MEDLINE | ID: mdl-34949530

ABSTRACT

PURPOSE: This study aimed to investigate whether a bioinformatics application can streamline genome reanalysis and yield new diagnoses for patients with rare diseases. METHODS: We developed TierUp to identify variants in new disease genes for unresolved rare disease cases recruited to the 100,000 Genomes Project, all of whom underwent genome sequencing. TierUp uses the NHS Genomic Medicine Service bioinformatics infrastructure by securely accessing case details from the Clinical Interpretation Portal application programming interface and by querying the curated PanelApp database for novel gene-disease associations. We applied TierUp to 948 cases, and a subset of variants were reclassified according to the American College of Medical Genetics and Genomics/Association of Molecular Pathology guidelines. RESULTS: A rare form of spondylometaphyseal dysplasia was diagnosed through TierUp reanalysis, and an additional 4 variants have been reported to date. From a total of 564,441 variants across patients, TierUp highlighted 410 variants present in novel disease genes in under 77 minutes, successfully expediting an important reanalysis strategy. CONCLUSION: TierUp supports claims that automation can reduce the time taken to reanalyze variants and increase the diagnostic yield from molecular testing. Clinical services should leverage bioinformatics expertise to develop tools that enable routine reanalysis. In addition, services must also explore the ethical, legal, and health economic considerations raised by automation.


Subject(s)
Genomics , Osteochondrodysplasias , Computational Biology , Humans , Rare Diseases/genetics , Software
2.
J Cell Biol ; 159(2): 217-24, 2002 Oct 28.
Article in English | MEDLINE | ID: mdl-12403809

ABSTRACT

The evolution of mitogenic pathways has led to the parallel requirement for negative control mechanisms, which prevent aberrant growth and the development of cancer. Principally, such negative control mechanisms are represented by tumor suppressor genes, which normally act to constrain cell proliferation (Macleod, K. 2000. Curr. Opin. Genet. Dev. 10:81-93). Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder, characterized by mutations in either TSC1 or TSC2, whose gene products hamartin (TSC1) and tuberin (TSC2) constitute a putative tumor suppressor complex (TSC1-2; van Slegtenhorst, M., M. Nellist, B. Nagelkerken, J. Cheadle, R. Snell, A. van den Ouweland, A. Reuser, J. Sampson, D. Halley, and P. van der Sluijs. 1998. Hum. Mol. Genet. 7:1053-1057). Little is known with regard to the oncogenic target of TSC1-2, however recent genetic studies in Drosophila have shown that S6 kinase (S6K) is epistatically dominant to TSC1-2 (Tapon, N., N. Ito, B.J. Dickson, J.E. Treisman, and I.K. Hariharan. 2001. Cell. 105:345-355; Potter, C.J., H. Huang, and T. Xu. 2001. Cell. 105:357-368). Here we show that loss of TSC2 function in mammalian cells leads to constitutive S6K1 activation, whereas ectopic expression of TSC1-2 blocks this response. Although activation of wild-type S6K1 and cell proliferation in TSC2-deficient cells is dependent on the mammalian target of rapamycin (mTOR), by using an S6K1 variant (GST-DeltaC-S6K1), which is uncoupled from mTOR signaling, we demonstrate that TSC1-2 does not inhibit S6K1 via mTOR. Instead, we show by using wortmannin and dominant interfering alleles of phosphatidylinositide-3-OH kinase (PI3K) that increased S6K1 activation is contingent upon the suppression of TSC2 function by PI3K in normal cells and is PI3K independent in TSC2-deficient cells.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Repressor Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Tuberous Sclerosis/metabolism , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Carrier Proteins/metabolism , Cell Cycle Proteins , Eukaryotic Initiation Factors , Fibroblasts/cytology , Fibroblasts/enzymology , Genes, Tumor Suppressor/physiology , Mice , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis/physiology , Proteins/metabolism , Recombinant Proteins/metabolism , Signal Transduction/physiology , TOR Serine-Threonine Kinases , Transfection , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...