Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 698: 134306, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31783449

ABSTRACT

In this study, solid state 13C nuclear magnetic resonance (NMR) spectroscopy was used to explore the carbon-containing functional groups present in pyrogenic carbon (PyC) produced during different fire spread modes to forest litter fuels from a dry sclerophyll eucalypt forest burnt in a combustion wind tunnel. A replicated experimental study was performed using three different fire spread modes: heading fires (i.e. fires which spread with the wind), flanking fires (i.e. fires which spread perpendicular to the wind) and backing fires (i.e. fires which spread against the wind). In addition to 13C NMR measurements of PyC, detailed fire behaviour measurements were recorded during experiments. Experiments showed that heading fires produced significantly more aryl carbon in ash samples than flanking fires. All other experimental comparisons for burnt fuel samples involving different fire spread modes were statistically insignificant. Principal component analysis (PCA) was used to explore the relationship between 13C NMR functional groups and fire behaviour observations. Results from PCA indicate that maximising the residence time of high temperature combustion and the combustion factor (i.e. the fraction of pre-fire biomass consumed by fire) could be a method for increasing the amount of aryl carbon in PyC. Maximising the amount of aryl carbon could be beneficial for the overall PyC balance from fire, since more recalcitrant carbon (e.g. carbon with a higher aryl carbon content) that is not emitted to the atmosphere has been shown to have longer residence times in environmental media such as soils or sediments.

3.
Nat Commun ; 7: 11536, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27146785

ABSTRACT

Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

SELECTION OF CITATIONS
SEARCH DETAIL
...